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Abstract—Convolutional analysis operator learning (CAOL)
methods train an autoencoding convolutional neural network
(CNN) in an unsupervised learning manner, to more accurately
solve inverse problems. Block Proximal Gradient method using
a Majorizer (BPG-M) achieved fast and convergent CAOL,
by using sharp majorizers and the momentum terms. This
paper proposes a model-based image reconstruction (MBIR)
method using autoencoding CNNs trained via CAOL, for sparse-
view computational tomography (CT). We apply BPG-M to
rapidly and stably solve the corresponding block multi-nonconvex
optimization problem. Numerical experiments show that, for
sparse-view CT, 1) the proposed MBIR method outperforms the
standard MBIR method using edge-preserving regularization; 2)
larger parameter dimensions of autoencoding CNNs improve
reconstruction accuracy of the proposed MBIR method; and
3) when using BPG-M, sharper majorization is more critical
for accelerating its convergence than giving more weights on
extrapolation.

I. INTRODUCTION

Convolutional analysis operator learning (CAOL) trains
an autoencoding CNN using unsupervised learning to more
accurately solve inverse problems [1]. CAOL has several the-
oretical and/or practical benefits for both training and testing.
First, CAOL can benefit from “big data”, i.e., training data
consisting of many (high-dimensional) signals [2]. Second, the
autoencoding CNNs trained via CAOL have signal recovery
guarantees when applied to compressed sensing [2]. Third,
CAOL is useful for unsupervised training of deep layered
CNNs [1].

Block Proximal Gradient method using a Majorizer (BPG-
M) [1], [3] uses block-wise extrapolation (i.e., a sequence
update using momentum terms), and is the state-of-the-art
optimization framework for solving block multi-(non)convex
problems, when used with a sharp majorizer. By using a
more general Lipschitz continuity assumption for block-wise
gradients, BPG-M is particularly useful for rapidly calculating
majorizers involved with large-scale problems. In particular,
BPG-M is effective for quickly learning convolutional opera-
tors from big data, e.g., CAOL [1] and convolutional dictionary
learning [3].

This paper proposes a model-based image reconstruction
(MBIR) method using autoencoding CNNs trained via CAOL,
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for sparse-view computational tomography (CT). This model
additionally incorporates a weighting technique that promotes
uniform resolution or noise properties in the reconstructed
image. We apply BPG-M to rapidly and stably solve the
corresponding block multi-nonconvex optimization problem.
Numerical experiments show that, for sparse-view CT, 1)
the proposed MBIR method outperforms the standard MBIR
method using edge-preserving (EP) regularization; 2) larger
parameter dimensions of autoencoding CNNs improve perfor-
mance of the proposed MBIR model; and 3) when solving the
proposed model via BPG-M, sharper majorization is more crit-
ical in accelerating its convergence than giving more weights
on extrapolation.

II. CAOL: REVIEW

This section reviews the (single-layer) CAOL model in [2].
The goal of CAOL is to find a set of filters that “best” sparsify
a set of training images. In particular, CAOL aims to learn
diverse filters, considering that diverse filters can generate
diverse sparse features. Consider the following CAOL model
[2]:

argmin
D=[d1,...,dK ]

min
{zl,k}

F (D, {zl,k}) + βg(D), (1)

F (D, {zl,k}) :=
L∑

l=1

K∑
k=1

1

2
‖dk � xl − zl,k‖22 + α‖zl,k‖0,

where � denotes a convolution operator (see boundary condi-
tion details in [1]), {xl ∈ C

J : l = 1, . . . , L} is a set of training
images, {dk ∈ C

R : k = 1, . . . ,K} is a set of convolutional
kernels, {zl,k ∈ C

J : l = 1, . . . , L, k = 1, . . . ,K} is
a set of sparse codes, g(D) is a regularizer or constraint
that encourages filter diversity or incoherence, α > 0 is a
thresholding parameter controlling the sparsity of features
{zl,k}, and β > 0 is a regularization parameter for g(D). We
often group the K filters into a matrix D = [d1, . . . , dK ] ∈
C

R×K . To learn diverse filters via CAOL (1), we proposed
a (nonconvex) orthogonality constraint that enforces a tight-
frame (TF) condition:

argmin
D

min
{zl,k}

F (D, {zl,k}) subj. to DDH =
1

R
· I, (P1)

and a regularizer that promotes diversity between filters [1].
In particular, when one applies the “learned” CAO (P1) to
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MBIR, the learned CAO (P1) works as an autoencoding CNN
[4]–[7]; see Remark 5 below. For fast and convergent CAOL,
we applied BPG-M as summarized in the next section.

III. BPG-M: REVIEW

This section reviews block multi-nonconvex problems and
summarizes BPG-M [1]. Consider the optimization problem

argmin F (u1, . . . , uB) := f(u1, . . . , uB) +

B∑
b=1

gb(ub), (2)

where variable u is decomposed into B blocks u1, . . . , uB

({ub ∈ R
nb : b = 1, . . . , B}), f is assumed to be continuously

differentiable, but functions {gb : b = 1, . . . , B} are not
necessarily differentiable. The function gb can incorporate
the constraint ub ∈ Ub, by allowing the gb functions to
be extended-valued, e.g., gb(ub) = ∞ if ub /∈ Ub, for
b = 1, . . . , B. We assume that both f and {gb} are closed and
proper and the sets {Ub} are closed and nonempty. Importantly,
we do not assume that f , {gb}, or {Ub} are convex.

In BPG-M, we consider a more general concept than
Lipschitz continuity of the gradient and define the following:

Definition 1 (M -Lipschitz continuity [1]). A function g :
R

n → R
n is M -Lipschitz continuous on R

n if there exist
a (symmetric) positive definite matrix M such that

‖g(u)− g(v)‖M−1 ≤ ‖u− v‖M , ∀u, v,
where ‖x‖2M := xTMx.

If the gradient of a function is M -Lipschitz continuous, then
we obtain the following quadratic majorizer at a given point
y without assuming convexity:

Lemma 2 (Quadratic majorization via M -Lipschitz continu-
ous gradients [1]). Let f(u) : Rn → R. If ∇f is M -Lipschitz
continuous, then

f(u) ≤ f(v)+ 〈∇uf(v), u− v〉+ 1

2
‖u− v‖2M , ∀u, v ∈ R

n.

Using Definition 1 and Lemma 2, BPG-M is given as
follows. To solve (2), we minimize majorizers of F cyclically
over each block u1, . . . , uB , while fixing the remaining blocks
at their previously updated variables. Let u(i+1)

b be the value
of ub after its ith update, and define

f
(i+1)
b (ub) := f

(
u
(i+1)
1 , . . . , u

(i+1)
b−1 , ub, u

(i)
b+1, . . . , u

(i)
B

)
,

for all b, i. At the bth block of the ith iteration, we apply
Lemma 2 to functional f

(i+1)
b (ub) with a M -Lipschitz con-

tinuous gradient at the extrapolated point ú(i+1)
b , and minimize

the majorized function. The corresponding proximal mapping
problem is given by

u
(i+1)
b =Proxgb

(
ú
(i+1)
b −

(
M̃

(i+1)
b

)−1
∇f

(i+1)
b (ú

(i+1)
b );M̃

(i+1)
b

)
:=argmin

ub

〈∇f
(i+1)
b (ú

(i+1)
b ),ub− ú

(i+1)
b 〉

+
1

2

∥∥∥ub− ú
(i+1)
b

∥∥∥2
˜M

(i+1)
b

+gb(ub)

Algorithm 1 BPG-M [1]

Require: {u(0)
b = u

(−1)
b : ∀b}, {e(i)b ∈ [0, 1], ∀b, i}, i = 0

while a stopping criterion is not satisfied do
for b = 1, . . . , B do

Calculate M
(i+1)
b , M̃ (i+1)

b by (4), and E
(i+1)
b by (5)

ú
(i+1)
b =u

(i)
b +E

(i+1)
b

(
u
(i)
b −u

(i−1)
b

)
u
(i+1)
b

=Proxgb

(
ú
(i+1)
b −

(
M̃

(i+1)
b

)−1
∇f

(i+1)
b (ú

(i+1)
b );M̃

(i+1)
b

)
end for
i = i+ 1

end while

where

ú
(i+1)
b = u

(i)
b + E

(i+1)
b

(
u
(i)
b − u

(i−1)
b

)
, (3)

∇f
(i+1)
b (ú

(i+1)
b ) is the block-partial gradient of f at ú(i+1)

b , a
scaled majorization matrix is updated by

M̃
(i+1)
b = λb ·M (i+1)

b � 0, λb > 1, (4)

and M
(i+1)
b ∈ R

nb×nb is a symmetric positive definite ma-
jorization matrix of ∇f

(i+1)
b (ub). In (3), the R

nb×nb matrix
E

(i+1)
b � 0 is an extrapolation matrix that accelerates conver-

gence in solving block multi-convex problems [3]. We design
it in the following form:

E
(i+1)
b = δe

(i)
b · λb−1

2(λb+1)
·
(
M

(i+1)
b

)−1/2(
M

(i)
b

)1/2
, (5)

for some δ < 1 and {0 ≤ e
(i)
b ≤ 1 : ∀b, i}. We apply the

following increasing momentum coefficient formula to (5):

e
(i+1)
b =

θ(i) − 1

θ(i+1)
, θ(i+1) =

1 +
√

1 + 4(θ(i))2

2
, (6)

which accelerated BPG-M in solving block multi-convex prob-
lems in some applications [3], [8]. Algorithm 1 summarizes
these updates. Algorithm 1 has the following convergence
result.

Theorem 3 (A limit point is a critical point [1]). Under
some mild conditions (e.g., lower-boundedness of F , lower
semicontinuity of {gb}, and existence of critical point of F ,
etc. [1, Assumptions i–iii]), any limit point of x(i+1) generated
by Algorithm 1 is a critical point x̄, i.e., 0 ∈ ∂F (x̄).

Remark 4 In Algorithm 1, there is a tradeoff between ma-
jorization sharpness via (4) and extrapolation effect via (3)
and (5). For CAOL with sufficiently sharp majorizers, we
observed that emphasizing sharp majorization provides faster
convergence than emphasizing extrapolation; for example,
λb = 1 + ε gives faster convergence than λb = 2. See
CAOL experiments with different λb values in [1]. When
solving block multi-convex problems, BPG-M does not have
this tradeoff [3].
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IV. SPARSE-VIEW CT MBIR WITH “LEARNED”
REGULARIZER VIA CAOL, AND BPG-M

This section applies pre-trained filters from a representative
dataset to recover images in extreme imaging that collects
highly undersampled or noisy measurements. We choose a
sparse-view CT application since it has interesting challenges
in reconstructing images, including Poisson noise in measure-
ments, nonuniform noise or resolution properties in recon-
structed images, and complicated or unstructured system ma-
trices. For CT, undersampling schemes can significantly reduce
the radiation dose and cancer risk from CT scanning. The
proposed approach can be applied to other image processing or
reconstruction applications, e.g., (parallel) magnetic resonance
imaging, deblurring, etc. (by replacing the data fidelity and
spatial strength regularization terms in (P2) below).

We pre-learn TF filters {d�k ∈ R
K : k = 1, . . . ,K} via

CAOL (P1) with a set of high-quality (e.g., normal-dose) CT
images {xl : l = 1, . . . , L}. To reconstruct a linear attenuation
coefficient image x ∈ R

N from post-log measurement y ∈ R
m

[9], [10], we apply the learned CAO (P1) as a regularizer, and
solve the following block multi-nonconvex problem:

argmin
x≥0

min
{zk∈RN}

1

2
‖y −Ax‖2W + γ

(
K∑

k=1

1

2
‖d�k � x− zk‖22

+ α′
N∑
j=1

ψjφ((zk)j)

)
. (P2)

Here, A ∈ R
m×N is a CT system matrix, W ∈ R

m×m is a
(diagonal) weighting matrix with elements {Wl,l = ρ2l /(ρl +
σ2) : l = 1, . . . ,m} based on a Poisson-Gaussian model for
the pre-log measurements ρ ∈ R

m with electronic readout
noise variance σ2 [9]–[12], ψ ∈ R

J is a pre-tuned spatial
strength regularization vector [13] with non-negative elements1

{ψj = (
∑m

l=1 A
2
l,jWl,l)

1/2/(
∑m

l=1 A
2
l,j)

1/2 : j = 1, . . . , N}
that promotes uniform resolution or noise properties in the
reconstructed image [10, Appx.], a function φ(a) is equal to 0
if a = 0, and is 1 otherwise, zk ∈ R

N is unknown sparse code
for the kth filter, and γ > 0 is a regularization parameter. We
now solve (P2) via BPG-M in Section III with a two-block
scheme.

A. Image Update
Given the current estimates of the sparse coefficients {zk :

k = 1, . . . ,K}, the proximal mapping of the image update in
(P2) is given by the following convex quadratic problem:

x(i+1) = argmin
x≥0

1

2

∥∥∥x− η(i+1)
∥∥∥2
˜MA

+
γ

2

K∑
k=1

‖d�k � x− zk‖22 ,

(7)

1The 2D CT geometry used here computes the area of overlap between each
pixel and the strip between the X-ray source and the finite-width detector
element, using the “Gtomo2_dscmex.m” routine in the Michigan Image
Reconstruction Toolbox (MIRT) [14]. This particular on-the-fly projector also
can compute the squared elements {A2

l,j : ∀l, j} on the fly. For general
CT geometries, A2

l,j may be impractical to compute, so one can replace the
design in [13] with the newer design {ψj =

∑m
l=1 Al,jWl,l/

∑m
l=1 Al,j :

j = 1, . . . , N} in [15].

TABLE I
RMSE (HU) OF DIFFERENT CT RECONSTRUCTION MODELS (123 VIEWS

AND ρ0=105)

FBP EP Proposed model
(P2), R=K=25

Proposed model
(P2), R=K=49

82.8 40.8 35.2 34.7

where

η(i+1) = x́(i+1) − M̃−1
A ATW

(
Ax́(i+1) − y

)
,

x́(i+1) = x(i) + E
(i+1)
A

(
x(i) − x(i−1)

)
,

M̃A = λAMA by (4), and MA � ATWA is a diagonal
majorization matrix in [1]. Because the trained filters {d�k}
satisfy the TF condition (see [1]), we obtain an efficient closed
form solution to (7) as follows:

x(i+1)=

[(
M̃A+γIR

)−1
(
M̃Aη(i+1)+γ

K∑
k=1

(Pd�k)�zk

)]
≥0

,

where P ∈ C
R×R flips a column vector in the vertical

direction (e.g., it rotates 2D filters by 180◦).

B. Sparse Code Update

Given the current estimate of x, the sparse coding in (P2)
is given by the following separable nonconvex problem:

{z(i+1)
k }=argmin

{zk}

K∑
k=1

1

2
‖d�k�x−zk‖22+α′

N∑
j=1

ψjφ((zk)j).

(8)
Since we have a sharp majorizer, we solve (8) without ex-
trapolation to reduce memory use (similar to CAOL [1]). We
obtain its optimal solution by hard thresholding with a voxel-
dependent threshold:

z
(i+1)
k = T

(
dk � x,

√
2α′ψ

)
, k = 1, . . . ,K, (9)

where the hard thresholding operator T (v, a) : RN → R
N is

defined by

T (v, a)j :=

{
0, |vj | < aj ,
vj , |vj | ≥ aj .

Remark 5 Note that when the learned CAOL (P1) is applied
to MBIR, it works as an autoencoding CNN. To see this,
substitute solution (9) to the proximal mapping problem in (7).
Because the trained filters in (P2) satisfy the TF condition, i.e.,∑K

k=1 ‖dk � x‖22 = ‖x‖22 for some boundary conditions [1],
we rewrite

∑K
k=1 ‖d�k�x−zk‖22 as ‖x−∑K

k=1(Pd�k)�zk‖22.
Substituting solution (9) into the proximal mapping (7) leads
to the following non-zero mean vector for a Gaussian prior at
the ith proximal mapping problem (7):

K∑
k=1

(Pd�k)� T
(
d�k � x(i),

√
2α′ψ

)
.

This connection is an explicit mathematical motivation for
constructing architectures of recurrent regression CNNs for
MBIR, e.g., BCD-Net [4], [5] and Momentum-Net [6], [7].
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(a) True (b) EP (c) Proposed model (P2),
with filters of R = K = 25

(d) Proposed model (P2),
with filters of R = K = 49

1
2
3

vi
ew

s

RMSE = 40.8 RMSE = 35.2 RMSE = 34.7

Fig. 1. Comparisons of reconstructed images from different MBIR methods in sparse-view CT (123 views (12.5% sampling) and ρ0=105; for the proposed
MBIR model (P2), TF filters were trained by CAOL (P1) – see Fig. 2; and display window is within [800, 1200] HU). The proposed MBIR model (P2)
using the autoencoder trained via CAOL (P1) shows higher image reconstruction accuracy compared to the EP reconstruction; see red arrows and circles. The
larger-dimensional autoencoder improves reconstruction accuracy of the MBIR model (P2); compare the results in (c) and (d).

V. RESULTS AND DISCUSSION

A. Experimental Setup

1) CAOL: We learned the CAOL model (P1) from the CT
dataset of with L = 10 and N = 512×512 from down-sampled
512×512 XCAT phantom slices [16]. We trained two sets of
filters with parameter dimensions {R = 5×5,K = 25} and
{R = 7×7,K = 49} to see their effectiveness in solving the
proposed sparse-view CT MBIR model (P2). The parameters
for the BPG-M algorithms were defined as follows.2 We set the
regularization parameter α as follows. We first trained filters
of the parameter dimension {R = 5×5,K = 25}, with some
α’s within 5× [10−5, 10−4]. We selected the filters learned
with α = 2×10−4, by considering their structural similarity to
the transforms learned by the patch-based method in [12]. For
training filters of the dimension {R = 7×7,K = 49}, we set
α = 10−4 by considering the 1

R -scale of the filter constraint
in (P1).

We applied the (scaled) exact Hessian majorizers for the
D-update and (scaled) exact identity majorizer for the {zl,k}-
update in (P1); see the corresponding majorizaiton matrix
designs in in [1]. We terminated the iterations if the relative
error stopping criterion (e.g., [3, (44)]) is met before reaching
the maximum number of iterations. We set the tolerance value
as 10−13 and the maximum number of iterations to 2×104.
See other training details in [3].

2) Sparse-View CT MBIR with Trained Filters via CAOL:
To avoid an inverse crime, our imaging simulation used a
2D 840×840 slice (air cropped, Δx =Δy = 0.4883 mm) of
the XCAT phantom that differs from the training slices. We
simulated sparse-view sinograms of size 888×123 (‘detectors
or rays’ × ‘regularly spaced projection views or angles’, where
984 is the number of full views) with GE LightSpeed fan-beam
geometry corresponding to a monoenergetic source with ρ0 =
105 incident photons per ray and no background events, and

2The remaining BPG-M parameters not described here are identical to those
in [3, VII-A2].

(a) R = K = 25 (b) R = K = 29

Fig. 2. Examples of trained filters of different parameter dimensions (filters
in (a) and (b) were trained with α = 2×10−4 and α = 10−4, respectively.)

electronic noise variance σ2 = 52. We reconstructed a 420×420
image with a coarser grid, where Δx=Δy=0.9766 mm.

For filtered back-projection (FBP) methods, we used a
conventional filtered back-projection method using a Hanning
window. For EP reconstructions, we combined the penalized
weighted-least squares term (PWLS) in (P2) and an EP reg-
ularizer

∑J
j=1

∑
j′∈Jj

ιjιj′ϕ(xj − xj′), where Jj is the set
of indices of the neighborhood, ιj and ιj′ are parameters that
encourage uniform noise [15], and ϕ(a) := δ2(|a/δ|− log(1+
|a/δ|)) (δ=10 in Hounsfield units3, HU). We initialized the
EP method with FBP, and ran the relaxed linearized augmented
Lagrangian method with 12 ordered-subsets [17]. We finely
tuned the regularization parameter (e.g., γ in (P2)) to achieve
both good RMSE and SSIM values, and chose it as 215.5.

For the proposed MBIR model (P2) using the filters trained
by the experiment in Section V-A1, the parameters were
defined as follows. For the trained filters of the dimension
R =K = 25, we chose the reconstruction model parameters
as {γ = 13 × 106, α′ = 2×10−10}; the set shows a good
tradeoff between the PWLS term and the learned regularize
(P1). For the trained filters of the dimension R=K=49, we
chose the model parameters as {γ = 13×106, α′ = 10−10},
by considering the 1

R -scale of the filter constraint in (P1). For
the BPG-M algorithm, we set λA = 1 + ε as defaults, and
terminated its iterations as similar in Section V-A1 – we set

3Modified Hounsfield units, where air is 0 HU and water is 1000 HU.
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0 1000 2000 3000 4000
Number of iterations, (i)

1.28

1.3

1.32

1.34

1.36

lo
g
( F

( {
x
(i
+
1)
}
,
{
z
(i
+
1)

k
}
))

×105

BPG-M, λA = 2
BPG-M, λA = 1.5
BPG-M, λA = 1 + ε

Fig. 3. Cost minimization comparisons in BPG-M-based MBIR (P2) with
different λA values (the filters of R=K=25 were learned via CAOL (P1)
with the CT dataset). Under the sharp majorization regime, maintaining sharp
majorization (i.e., λA=1+ ε) provides faster convergence than giving more
weight on extrapolation (i.e., λA=2).

the tolerance value and the maximum number of iterations to
10−6 and 4×103, respectively.

We evaluated the reconstruction quality by the root mean
square error (RMSE; in HU) in a region of interest (ROI),
where the ROI was a circular region (around center) in-
cluding all the phantom tissues. The RMSE is defined by
RMSE(x�, xtrue) := (

∑NROI
j=1 (x

�
j − xtrue

j )2/NROI)
1/2, where x�

is the reconstructed image, xtrue is the ground truth image, and
NROI is the number of pixels in a ROI.

B. Sparse-View CT MBIR with Trained Autoencoding CNN
and BPG-M

In sparse-view CT using only 12.5% of full projections
views, the proposed MBIR model (P2) using the trained
autoencoder via CAOL (P1) outperforms EP reconstruction in
terms of RMSE; it reduces RMSE by approximately 5.5HU.
(The RMSE reduction is comparable to that of the patch-based
method in [10] within a similar imaging setup.) See Table I and
Fig. 1. The model (P2) can better recover high-contrast regions
(e.g., bones) – see red arrows and circles in Fig. 1; however, as
similarly observed in [10], [12], edges in low-contrast regions
(e.g., soft tissues) become blurry while removing noise via
(9). Fig. 2 shows that larger-dimensional filters capture more
interesting or diverse features of training images; in particular,
the trained filters of the dimension R=K=49 capture some
diagonal structures. This implies that diverse features in filters
often captured in larger-dimensional filters can be useful in
improving MBIR performances.

On the algorithmic side, the BPG-M framework guarantees
the convergence of MBIR (P2). Under the sharp majorization
regime in BPG-M, maintaining the majorization sharpness is
more critical than having stronger extrapolation effects, as
similarly shown in CAOL experiments (see Remark 4). Figs. 3
support these assertions.

VI. CONCLUSION

We reviewed the CAOL framework that trains autoencoding
CNNs in an unsupervised fashion, and BPG-M that rapidly
and stably solves block multi-(non)convex problems via sharp
majorizers and the momentum. In addition, CAOL combined

with BPG-M provides strong mathematical motivations in
constructing recurrent regression CNNs, namely Momentum-
Net [6], [7], for fast and convergent MBIR.

For sparse-view CT, the proposed MBIR model using
a (single-layered) autoencoder trained via CAOL, signifi-
cantly improves reconstruction accuracy compared to EP-
based MBIR. In particular, larger-dimensional autoencoders
capture more diverse features in convolutional kernels, and
further improve the performance of the proposed MBIR model.
Finally, by using BPG-M with emphasis on sharp majorizers,
we can rapidly and stably solve the proposed MBIR problem.
Future work will explore the effectiveness of multi-layered
CAOL in [1] to MBIR problems in extreme imaging.
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