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Abstract—Hand-held light-field cameras have enabled new
photographic features such as refocusing and perspective shifts
in post-processing. These cameras have traditionally sampled
the 4D light-field directly by multiplexing angular measurements
with spatial measurements on a single photosensor. This requires
an undesirable trade-off between spatial and angular resolution.
Focal stack cameras record varying projections of the light-field
by capturing a set of photographs at different sensor positions.
Prior techniques for reconstructing the 4D light-field from focal
stack measurements have required depth estimation or ignored
the existence of occlusions in the scene.

We present low-rank plus sparse models for the light-field
and apply them to the problem of reconstructing from focal
stack measurements. We explore regularizers based on low-rank
tensor decompositions to better exploit the dimensionality of the
data. We optimize our model with a block proximal gradient
method using a majorizer that provides a convergence guarantee.
Numerical experiments show a several dB improvement in
PSNR over traditional reconstruction methods and improved
accuracy of depth estimation from light-fields reconstructed by
the proposed methods.

I. INTRODUCTION

The light-field models the intensities of all rays in free

space, from a geometric optics perspective. In particular we

can use a light-field to model all of the rays that enter a

camera’s aperture and terminate at the camera’s photosensor,

using a two-plane parameterization. Thus every ray in the

camera is uniquely determined by the (u, v) coordinate where

it passes through the aperture and the (x, y) coordinate where

it meets the sensor plane. A light-field, once acquired, can

then be used to simulate different focal settings by a simple

rebinning of rays to the spatial locations they would have

terminated.

Hand-held light-field cameras, such as those made by Lytro

and Ratrix, acquire the 4D light-field by multiplexing angular

coordinates with spatial coordinates using a microlens array.

This configuration reduces the measured spatial resolution by

a factor of the angular resolution, leading to an undesirable

trade-off. Furthermore, visual inspection of 4D light-fields

suggests the data is highly redundant: holding different angular

coordinates fixed results in sub-aperture images of the scene

with only slight variations in perspective.
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In [1], Ng showed that photographs taken at different

focus settings are 2D slices of the 4D light-field in Fourier

space, analogous to the Fourier slice-projection theorem. All

such 2D slices make up a 3D manifold, termed the Focal

Manifold. Levin and Durand used these results as a prior to

reconstruct light-field data from a focal stack by restricting the

reconstruction to the 3D Focal Manifold in 4D Fourier space

[2]. They also showed that most of the energy of a light-field

lies on the Focal Manifold, due to typical scenes being very

Lambertian. As such, their reconstruction technique was prone

to more error in non-Lambertian areas, such as at occlusion

boundaries. Other techniques for reconstructing a light-field

require a non-linear depth estimation process [3].
Low-rank plus sparse models have been applied to recon-

structing image frames across time [4]. Typically the data

is flattened into a 2D matrix before enforcing a low-rank

matrix structure; tensors, a generalization of matrices to higher

dimensions, allow us to enforce a low-rank structure in higher

dimensions and avoid removing the inherent structure that

exists between different dimensions. Adding a sparse compo-

nent to the model can help it be robust to signal outliers and

details that would otherwise require a high number of rank 1

components to represent.
Kamal et al. applied a low-rank plus sparse (L+S) tensor

model to reconstruct 5D (spatial-angular-temporal data) light-

fields from a coded-aperture acquisition [5], where the L+S

model was applied to local patches of the light-field. Instead

of using patches, this paper uses a regularizer that models the

light-field’s global structure as a low-rank plus sparse tensor

(L + S) for the purpose of reconstructing from a focal stack

of images. In addition, we provide an optimization algorithm

with a convergence guarantee for this non-convex problem.

II. MODEL: LIGHT-FIELD IMAGING WITH FOCAL STACKS

Given a 4D light-field, LF (x, y, u, v) parameterized by an

aperture and sensor planes separated by F , we can compute

the digital photograph taken by integrating the rays across the

aperture, D for each Δx ×Δy pixel

IF [m,n] =

∫∫ (∫∫
(u,v)∈D

LF (x, y, u, v) du dv

)

rect(x/Δx −m) rect(y/Δy − n) dx dy.
(1)
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If we consider the sensor plane at a distance of κF for any

scalar κ ∈ (0,∞), we can similarly find the photograph taken,

IκF [m,n], by integrating LκF (x, y, u, v) which relates to our

original parameterized light-field by a shearing operation [1]

LκF (x, y, u, v) = LF (κ
−1x− (1− κ−1)u,

κ−1y − (1− κ−1)v, u, v). (2)

These light-field parameterizations are continuous and in-

tractable for computation. Since we are interested in recon-

structing a discrete light-field that approximates the continuous

function, we will assume that LF (x, y, u, v) can be written as

a sum of rectangular basis functions

LF (x, y, u, v)

≈
∑
m

∑
n

∑
k

∑
l

L[m,n, k, l]rect(x/Δx −m)

rect(y/Δy − n) rect(u/Δu − k) rect(v/Δv − l) , (3)

where we take the basis coefficients L[m,n, k, l] as our

discrete light-field. By plugging (3) and (2) into (1), we can

find the digital photograph taken at any sensor distance κF
by

IκF [m
′, n′] = (L ∗ g)[m,n, k, l]

∣∣∣∣
m=κ−1m′,n=κ−1n′,k=0,l=0

,

(4)

with

g[m,n, k, l] = {s ∗ t}(mΔx, nΔy, kΔu, lΔv)

s(x, y, u, v) = rect(x/Δx) rect(y/Δy)

rect(u/Δu) rect(v/Δv)

t(x, y, u, v) = κrect
(
κ/Δx (x− (1− κ−1)u)

)
rect

(
κ/Δy (y − (1− κ−1)v)

)
.

Thus the projection of the sheared, discretized light-field can

be factored as a 4D convolution followed by a 2D slicing

and magnification. In practice we compute a set of 2D con-

volutions across the 2D slice for a more memory efficient

implementation with the same computational cost. We note

that the slice indices for the discrete function in (4) are not

necessarily integers in general, but in many contexts κ−1 ≈ 1
and so we forego the interpolation step.

Traditionally, focal stacks have been measured by physically

moving the imaging sensor and taking separate exposures

across time, but recent advances in sensor technology have

allowed for transparent photosensors [6]. A collection of these

transparent photosensors at different depths will allow us to

capture a focal stack in a single exposure, making a practical

focal stack camera. We obtain a 3D set of measurements by

stacking the 2D images taken at different values of κ.

III. IMAGE RECONSTRUCTION: L+ S
Reconstructing a 4D dataset from a 3D set of measurements

is an extremely underdetermined problem. To overcome this

limitation, we model a light-field as a low-rank plus sparse

tensor. While matrices are two-way arrays, tensors generalize

Fig. 1. Illustration of the CP Decomposition for a 3D tensor R as sum of r
rank 1 tensors. Each rank 1 tensor is a tensor outer product of 3 vectors.

this idea to higher dimensions. This allows us to model higher-

dimensional data without flattening the data to only two-

dimensions that would possibly lose the structural relationship

present between dimensions.

The idea of rank is a bit more nuanced for tensors then it is

for matrices [7]. This work focuses on the Canonical Polyadic

Decomposition (CPD) that decomposes a tensor into a set of r
rank 1 tensors (unlike the SVD, these component vectors are

not necessarily mutually orthogonal). The CPD decomposition

can be used to find the best rank r approximation of a tensor,

R, as follows:

R =

r∑
i=1

q
(x,y)
i ◦ q(u)i ◦ q(v)i := �Q(x,y), Q(u), Q(v)�, (5)

where we have used ◦ to represent a generalized outer product

(see Fig. 1 for visual depiction) and �·� represents a compact

notation where Q(z) represent the concatenation of each q
(z)
i .

In our low-rank tensor approximation, we unroll the spatial

dimensions into a single dimension. While the data along

the angular dimensions tends to be slowly varying – lending

itself well to a low-rank approximation – we make no such

assumptions on the spatial variations of the scene. By using a

3-way tensor model, we are able to achieve a lower rank than

a full 4-way tensor model.

Inspired by the formulation for Robust PCA in [8] and its

application to inverse problems in [4], we optimize an inverse

problem where the low-rank plus sparse tensors are enforced

as a regularizer with the following objective:

argmin
x≥0

min
Q(x,y),Q(u),Q(v),S

‖y −Ax‖22

+ α
∥∥∥x− vec

(
�Q(x,y), Q(u), Q(v)� + S

)∥∥∥2
2

+ β ‖Wvec(S)‖1 (6)

where A is our system model obtained by stacking the

convolutions in (4) for each κ, W is a 4D unitary sparsifing

transform (e.g., canonical, Fourier, wavelet bases, etc.), x and

y represent our vectorized reconstruction and measurements,

respectively, S represent the sparse tensor components, and

each Q(z) represent the tensor component matrices that define

our low-rank tensor R.

Compared with traditional matrix-based robust PCA, finding

a low-rank tensor approximation of a light-field is a non-

convex problem due to the product of Q(z) terms. This



challenge has hindered algorithms in previous works from

providing a convergence guarantee. Here we introduce an

image reconstruction algorithm based on Block Proximal Gra-
dient method using a Majorizer (BPG-M) [9], [10], [11] that

guarantees (local) convergence under mild assumptions (e.g.,

continuity, lower-boundedness, etc. [9]).

IV. CONVERGENT IMAGE RECONSTRUCTION

ALGORITHM: BPG-M

We optimize our objective (6) by BPG-M using five blocks

x, Q(x,y), Q(u), Q(v) and S , and note that (6) is a block multi-

convex problem (i.e., (6) is convex in each block, when all

other blocks are fixed). We update each block sequentially.

A. Image Update

For the image update step, we first construct a quadratic

surrogate function using a diagonal majorization matrix, M , at

a linearly extrapolated point, x́(i+1). We then solve the corre-

sponding majorized problem. Our proximal mapping problem

is given by:

argmin
x :x≥0

‖x− ξ(i+1)‖2M+α‖x− vec(R+ S)‖22 (7)

where

ξ(i+1) = x́(i+1) −M−1AT (Ax́(i+1) − y)

x́(i+1) = x(i) + w(i+1)(x(i) − x(i−1))

w(i+1) =
θ(i) − 1

θ(i+1)

θ(i+1) =
1 +

√
1 + 4(θ(i))2

2
,

and w(i+1) is the increasing momentum-coefficient used

in [9, (11)]. For our majorization matrix, we use M =
diag

(
|AT ||A|1

)
[9], [10]. Our image update is given by a

closed-form solution to (7):

x(i+1) =
[
(M + αI)−1(Mξ(i+1) + αvec(R+ S))

]
≥0

,

where [·]≥0 thresholds negative values to zero.

B. Sparse Tensor Update

We update the sparse tensor by using the well-known soft-

thresholding solution for an �1 proximal update:

vec
(
S(i+1)

)
= WTTβ/α(W (x− vec(R)))

where Ta(z) := [z − a]≥0 · sign(z).

C. Low-Rank Tensor Update

For the low-rank tensor updates, we forgo the extrapolation

and majorization and solve for each component exactly in a
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Fig. 2. Tensor approximation accuracy vs tensor rank for the two disc dataset.
The true tensor is full rank even in the absence of noise.

BCD fashion using least-squares, where each update is given

by:

Q(x,y)(i+1)

=(X(x,y) − S(x,y))(Q
(v)(i) �Q(u)(i))

((Q(v)(i))TQ(v)(i) ·∗(Q(u)(i))TQ(u)(i))†,

Q(u)(i+1)

=(X(u) − S(u))(Q
(v)(i) �Q(x,y)(i+1))

((Q(v)(i))TQ(v)(i) ·∗(Q(x,y)(i+1))TQ(x,y)(i+1))†,

Q(v)(i+1)

=(X(v) − S(v))(Q
(u)(i+1) �Q(x,y)(i+1))

((Q(u)(i+1))TQ(u)(i+1) ·∗(Q(x,y)(i+1))TQ(x,y)(i+1))†,

where X(z) and S(z) represents a matrix created by unfold-

ing our reconstructed tensor and sparse tensor along the z
dimension, � represents the Khatri-Rao product or “column-

wise Kronecker product” and ·∗ represents the Hadamard or

elementwise product. (See [7] for additional information).

V. NUMERICAL EXPERIMENTS

A. Setup: Imaging and Image Reconstruction

We tested our model on a simulated scene of two target discs

at 1 and 2 meters from the camera (see Fig. 3(a-True)). From

our simulated scene, we generated five noiseless 151×151
images at different focus settings through a 50mm focal length

lens, and we reconstructed a light-field with 5×5 angular views.

The focal planes were placed at regular intervals in the scene.

For comparison, we reconstructed the light-field using sev-

eral general methods, including backprojection (BP) and 4D

edge-preserving (EP) regularization. For EP regularized recon-

struction, we used a 4D first-order finite difference regularizer

with hyperbola penalty, i.e., ϕ(t) := δ2(
√
1 + (t/δ)2 − 1)

(δ = 10−2). We chose the regularization parameter (balancing

the data fitting term and the regularizer) as 10−7. For the

proposed L + S reconstruction method, we chose W = I ,

and finely tuned the regularization parameters α, β to achieve

good image quality – α = 10−9 and β = 10−10 × α. For the

tensor rank, we chose r = 20. Fig. 2 shows the accuracy vs

rank of a low-rank tensor approximation of the true light-field.
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Fig. 3. Comparison of reconstructed light-fields and estimated depths with different reconstruction methods on noiseless measurements. (a) Error maps of
reconstructed 1,1 light-field view (farthest from the center view), and (b) Estimated depth maps

TABLE I
ACCURACY OF IMAGE RECONSTRUCTION AND DEPTH ESTIMATION WITH

DIFFERENT IMAGE RECONSTRUCTION METHODS ON NOISELESS

MEASUREMENTS

BP EP L+ S
PSNR (dB) 21.0 26.1 28.7

Depth RMSE (m) 0.31 0.40 0.16

This plot was typical of the light-field data we analyzed which

motivated a larger choice for r. We used the MATLAB Tensor

Toolbox [12] for low-rank tensor updates in Section IV-C. We

ran 1,000 BPG-M iterations to ensure sufficient convergence.

B. Results: Image Reconstruction

Fig. 3(a) shows the error in the top leftmost view of the

light-field. Edges are the most difficult part to reconstruct.

While backprojection clearly blurred edges a lot, other meth-

ods performed better. Table I compares the performance in

terms of PSNR of the three different reconstructions. The

proposed L+S method improves the PSNR of the EP recon-

struction by over 2.5dB in the noiseless measurements case.

In the noisy case, we see a sharp decrease in improvement in

PSNR to only 0.5dB over the EP method. We are currently

working to resolve this apparent sensitivity to noise.

C. Result: Depth Estimation

Our goal in reconstructing the light-field is not for the sake

of the data itself, but to enable the interesting applications

of light-fields to imaging. Such applications are perspective

shifts, digital refocusing, and monocular depth estimation.

While our light-field error measures well the ability of our

reconstruction to shift perspectives, here we test how well it

performs as input to a depth estimation algorithm. Ideally our

reconstruction will distribute its error in such a way as to have

little effect on depth estimation.

For a depth estimation algorithm, we have chosen to use

the Spinning Parallelogram Operator (SPO) method for robust

depth estimation [13]. This state-of-the-art method performs

well on benchmark data and has code available publicly online.

Fig. 3(b) compares the depth maps attained by applying

SPO to BP, EP, and L + S reconstructions. While the light-

field obtained via EP reconstruction performed better than BP

in terms of PSNR, it is not useful for determining depth as it

leads to the incorrect classification of the back disc as being

at the same depth as the front. Our proposed method L + S
obtains high PSNR and still allows SPO to distinguish the

depths of each disc.

VI. CONCLUSIONS

This paper proposed a regularized reconstruction method for

light-fields using low-rank plus sparse tensors. The proposed

L + S reconstruction model captures well the redundancy

and structure inherent in light-field data, leading to improved

reconstruction of light-fields from focal stack measurements,

in terms of both PSNR and performance in depth estimation

algorithms.

In further work, we hope to overcome an apparent sensitivity

of the method to noise and to speed up the reconstruction

algorithm by tightening the majorizer used for optimizing with

BPG-M. Appropriate choice of sparsifying transform W may

further improve the image reconstruction accuracy of L+ S .
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