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ABSTRACT 

To improve digital breast tomosynthesis (DBT) image quality, we are developing model-based iterative reconstruction 

methods. We developed the SQS-DBCN algorithm, which incorporated detector blur into the system model and 

correlation into the noise model under some simplifying assumptions. In this paper, we further improved the 

regularization in the SQS-DBCN method by incorporating neighbors along the diagonal directions. To further 

understand the role of the different components in the system model of the SQS-DBCN method, we reconstructed DBT 

images without modeling either the detector blur or noise correlation for comparison. Visual comparison of the 

reconstructed images showed that regularizing with diagonal directions reduced artifacts and the noise level. The SQS-

DBCN reconstructed images had better image quality than reconstructions without models for detector blur or correlated 

noise, as indicated by the contrast-to-noise ratios (CNR) of MCs and textural artifacts. These results indicated that 

regularized DBT reconstruction with detector blur and correlated noise modeling, even with simplifying assumptions, 

can improve DBT image quality compared to that without system modeling. 
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1. INTRODUCTION  

Digital breast tomosynthesis (DBT) was developed to alleviate the problem of overlapping tissue in conventional two 

dimensional (2D) mammography. In DBT, commonly used reconstruction methods include filtered back-projection 

(FBP) [1-3] and iterative reconstruction (IR) methods [4-6]. To improve DBT image quality, we are developing model-

based iterative reconstruction (MBIR) method based on models of the imaging system physics. Our preliminary 

implementation [7] incorporated detector blur into the system model and correlation into the noise model under some 

simplifying assumptions, and used a separable quadratic surrogate (SQS) algorithm for minimizing the cost function. We 

also replaced the traditional ray-tracing projector with the segmented separable footprint projector (SG projector) [8]. 

We referred to this reconstruction method as the SQS-DBCN algorithm. We have shown that SQS-DBCN improves 

DBT image quality, especially for microcalcification (MC) clusters that are one of the important signs of early breast 

cancer. 

In the current study, we continue to refine the SQS-DBCN algorithm. We introduced regularization along the diagonal 

directions to reduce the textural artifacts in the reconstructed images. To investigate the effects of the detector blur 

model and the correlated noise model on DBT image quality, we reconstructed the images of phantoms and human 

subjects by removing one of the model components at a time and compared these images with those reconstructed with 

both components. The contrast-to-noise ratios (CNR) of MCs from the phantoms over a range of parameters and the 

visual quality of the human subject images under different reconstruction conditions were used to evaluate the 

effectiveness of the model components in the SQS-DBCN method. 
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2. METHODS AND MATERIALS 

2.1 Regularization with Eight Neighboring Pixels 

In the SQS-DBCN method for DBT, we consider the following reconstruction problem: 
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where f is the image to reconstruct, yi is the ith measured projection view (PV) after log transform, Ai is the projection 

matrix, Bi is the detector blur,   
 
 and   

  are diagonal covariance matrices of quantum noise and readout noise, 

respectively, and R(f) is the regularization term. As a first approximation, we simplified the implementation of the SQS-

DBCN method by making several assumptions: (a) the x-ray attenuation by the signal is much smaller than that by the 

background tissue, (b) the quantum noise variance is constant over the field of view of the detector for a given projection 

angle, and (c) the detector blur is spatially invariant. The formulation of the reconstruction problem shown in (1) is based 

on assumption (a). Assumptions (b) and (c) make the inversion of     
 
  

    
  in (1) easily implementable in the 

frequency domain with a fast Fourier transform (FFT). 

The purpose of the regularization term  ( ) is to control the noise level. To formulate the regularizer, we used the 

hyperbola potential function  ( )    (√  (   )   ), which is edge preserving. Unlike the spatially weighted non-

convex regularization [9] that we proposed to enhance MCs, the regularization used in this work is less aggressive  

because strong regularization may introduce artifacts to the reconstructed images. Furthermore, the hyperbola is convex 

and ensures that (1) has a unique minimizer. The regularization was applied to the horizontal and the vertical directions 

in our previous implementation. Specifically, the regularization R(f) has the following form: 
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where Cx and Cy compute finite differences along the horizontal and the vertical directions. The subscript ‘4NP’ 

represents ‘4 neighboring pixels’. 

The disadvantage of     ( ) is that it encourages sharp edges along the horizontal and the vertical directions, such that a 

small reconstructed object such as a MC may have the shape of a square, and creating subtle square patterns in the soft 

tissue structures. In this work, we improved the regularization by implementing the regularization using all 8 

neighboring pixels (8NP): 
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where Cx-y and Cx+y compute finite differences along the two diagonal directions. The factor of 1/2 is included to keep 

the overall regularization effect at a similar level when comparing with the 4NP regularization. 

2.2 Reconstruction without Detector Blur or Noise Correlation 

In addition to comparing the 4NP and 8NP regularization, we also investigated the role of each model component in the 

SQS-DBCN method. The SQS-DBCN method includes the detector blur, the corresponding noise correlation and the 

regularization. To examine the effects of the detector blur and the noise correlation, we studied the following two 

reconstruction algorithms: 
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The no-detector-blur (noDB) reconstruction neglects the detector blur by setting the point spread function to a Kronecker 

impulse such that    becomes an identity matrix. This is equivalent to a common approach to SQS regularized 

reconstruction that ignores detector blur and noise correlation. For the no-noise-correlation (noNC) reconstruction, we 

keep the detector blur in the system model while neglecting the noise correlation caused by the detector blur so that the 

effect of the correlated noise model in SQS-DBCN can be evaluated. Another case is that we keep both the detector blur 

and noise correlation while neglecting the regularization. 

2.3 Performance Evaluation and Figures of Merit 

The regularization and reconstruction methods were applied to DBT of both breast phantom and human subjects. The 

phantom consisted of a stack of five 1-cm-thick 50% adipose/50% glandular heterogeneous slabs that simulated the 

composition and parenchymal pattern of the breast [4]. Clusters of calcium carbonate specks of three nominal size 

ranges (0.25-0.30mm, 0.18-0.25mm, and 0.15-0.18mm) simulated MCs of different conspicuity levels. Several clusters 

of each size group were sandwiched at random locations between the slabs. The DBT system acquired 21 projections in 

3
o
 increments over a 60

o
 arc using a flat panel CsI/a:Si detector with a pixel pitch of 0.1 mm x 0.1 mm. All DBTs were 

reconstructed at 0.1 mm x 0.1 mm pixel size and 1 mm slice spacing. To simulate the DBT acquired with a GE 

commercial system, we used the 9 central projections for reconstruction, corresponding to DBT of 24
o
 scan angle. Two 

DBT scans with invasive ductal carcinomas in human subjects acquired with IRB approval were also included to 

evaluate the visual quality of mass margins and soft tissue structures. 

The quality of DBT reconstructed with 4NP and the 8NP regularization were visually compared. The difference map 

was calculated between the two types of the regularization. To compare SQS-DBCN with the noDB and the noNC 

reconstructions, we used the CNR of MCs as a figure-of-merit. The contrast of an MC was obtained from the peak value 

of a 2D Gaussian fitted to the MC. The root-mean-square noise was estimated from a noise patch near each cluster of 

MCs. The mean and standard deviation of the CNR for a given reconstruction condition were estimated from over 30 

MCs for each size group. The simultaneous algebraic reconstruction technique with multiscale bilateral filtering (SART-

MSBF) method [10] that our lab previously developed was used as a baseline for comparison. 

3. RESULTS 

Figure 1 and Figure 2 show the difference between the 4NP regularization and the 8NP regularization for an MC cluster 

in the phantom and a mass in human subject DBT, respectively. With the 4NP regularization, the background texture 

looks like a lot of overlapping squares, which is caused by the 4NP regularization that encourages sharp edge along the 

horizontal and the vertical directions. With the 8NP regularization, the background texture looks more smooth and 

natural. The difference map between the 4NP and the 8NP shows clearly that the “square” texture is reduced with the 

8NP regularization.  

Figure 3 shows the CNR curves as a function of β with the SQS-DBCN reconstruction, the noDB reconstruction and the 

noNC reconstruction. We also plotted the CNR level of the SART-MSBF method as a reference. For both the small-

sized (0.15-0.18mm) and the medium-sized (0.18-0.25mm) MCs, the SQS-DBCN method achieved a much higher CNR 

compared with the methods that excluded one of the model components. The SQS-DBCN method also provided a wider 

range of β values such that the new method will generate higher CNR values compared with SART-MSBF. The large-

sized MCs have a similar trend but the CNR curves are not shown here. The reconstruction that included both the 

detector blur and noise correlation while neglecting the regularization resulted in extremely noisy images after only 2 to 

3 SQS iterations so that we omit these results. 

 

 

Proc. of SPIE Vol. 10132  1013226-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/15/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



 

 
 

 

 

 

Figure 4 shows one MC cluster from each size group reconstructed with the four methods. Note that the β value used 

here (    ) was not the value corresponding to the highest CNR (Figure 3). The β value that gave the highest CNR 

over-enhanced the high-frequency texture in the background. The preferred β values for each method were chosen such 

that both the MCs and the soft tissue structures and mass margins are acceptable. Figure 4 shows that the noDB method 

generated bumpy texture in the background, while the noNC images were generally more blurred. On the other hand, the 

image patches with the SQS-DBCN method have sharp MCs while preserving the texture. Figure 5 shows a part of a 

large spiculated mass in a DBT slice reconstructed with the different methods. Similar to the phantom, the reconstructed 

images when either the detector blur or the noise correlation is ignored have bumpy background. The SQS-DBCN 

method gives the best reconstruction results in general. This study demonstrated that both the detector blur and the noise 

correlation models are important components in the SQS-DBCN method.  

 

     

Figure 1. A reconstructed MC cluster from the breast phantom with (a) 4NP, (b) 8NP regularizations, and (c) their 

difference. The parameters used in the SQS-DBCN method are           ,     . The 8NP regularization 

provides more natural-looking texture. The contrast of MCs with the 8NP method is slightly lower than those with the 

4NP but the 8NP image has higher CNR because of a lower noise level. The size of the image patches is         (1 

pixel = 0.1 mm x 0.1 mm). 

 

     
 

Figure 2. A 5-mm invasive ductal carcinoma in a human subject DBT slice reconstructed with (a) 4NP, (b) 8NP 

regularizations and (c) their difference. The parameters in the SQS-DBCN were            ,     . The 8NP 

method reduces artifacts in the texture. The size of the image patches is          (1 pixel = 0.1 mm x 0.1 mm). 

 

(a) 4NP Regularization (b) 8NP Regularization (c) Difference (8NP - 4NP) 

(a) 4NP Regularization (b) 8NP Regularization (c) Difference (8NP - 4NP) 
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CNR of Small-sized MCs (0.15-0.18mm)
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CNR of Medium-sized MCs (0.18-0.25mm)
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Figure 3. CNR of MCs of two different sizes as a function of the regularization parameter   when   is fixed at 

0.002/mm. The SQS-DBCN method is able to reconstruct MCs with higher CNR compared with the no-detector-blur 

or the no-noise-correlation reconstructions. 

 

 

 SQS-DBCN No Detector Blur No Noise Correlation SART-MSBF 
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Figure 4. MC clusters of different sizes in the breast phantom DBT reconstructed with four different methods (  
        ,     ). All ROIs are 180 x 180 pixels in size (1 pixel = 0.1 mm x 0.1 mm). 
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Figure 5. Comparison of the four methods for the DBT of an invasive ductal carcinoma in a breast with spiculations 

(          ,     ). Only a small part of the mass is shown to have a close-up view the spiculations. 

Our results showed that regularizing with diagonal directions reduced artifacts and the noise level. It effectively 

eliminated the square texture resulting from enhancing sharp edges along the horizontal and vertical directions in the 

previous implementation. The SQS-DBCN reconstructed images had better image quality than reconstructions without 

modeling detector blur or correlated noise, as indicated by the CNR of MCs and textural artifacts. These results indicated 

that regularized DBT reconstruction with detector blur and correlated noise modeling, even with simplifying 

assumptions, can improve DBT image quality compared to that without system modeling. 

4. CONCLUSIONS 

In this work, we showed that the 8NP regularization is better than the 4NP regularization in reducing artifacts in the 

reconstructed DBT images. The SQS-DBCN method that incorporated both the detector blur and correlated noise 

models is superior to those neglecting one of the model components. However, our current SQS-DBCN method depends 

on several assumptions and good parameter selection. Further study is needed to develop adaptive methods to select the 

parameters, better estimation of noise variance, and more general model to relax the assumptions. This study also 

indicates that a more complete model-based reconstruction may further improve the DBT image quality. We will 

continue to investigate methods to implement other system model components such as focal spot blur, scatter, and beam 

hardening. 
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