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ABSTRACT
Recent research in computed tomographic imaging has focused on
developing techniques that enable reduction of the X-ray radiation
dose without loss of quality of the reconstructed images or vol-
umes. While penalized weighted-least squares (PWLS) approaches
have been popular for CT image reconstruction, their performance
degrades for very low dose levels due to the inaccuracy of the un-
derlying WLS statistical model. We propose a new formulation for
low-dose CT image reconstruction based on a shifted-Poisson model
based likelihood function and a data-adaptive regularizer using the
sparsifying transform model for images. The sparsifying transform
is pre-learned from a dataset of patches extracted from CT images.
The nonconvex cost function of the proposed penalized-likelihood
reconstruction with sparsifying transforms regularizer (PL-ST) is
optimized by alternating between a sparse coding step and an im-
age update step. The image update step deploys a series of convex
quadratic majorizers that are optimized using a relaxed linearized
augmented Lagrangian method with ordered-subsets, reducing the
number of (expensive) forward and backward projection operations.
Numerical experiments show that for low dose levels, the proposed
data-driven PL-ST approach outperforms prior methods employing
a nonadaptive edge-preserving regularizer. PL-ST also outperforms
prior PWLS-ST approach at very low X-ray doses.

Index Terms— Transform learning, low-dose CT, shifted-
Poisson statistical model, sparse representations, machine learning

1. INTRODUCTION

X-ray Computed Tomography (CT) is a popular imaging tech-
nique in modern medical diagnosis and treatment. However, X-ray
radiation can be harmful to human health, so there has been grow-
ing interest in techniques that enable reduced radiation dose without
compromising image quality.

Two common strategies to reduce dose include decreasing the
photon intensity at the X-ray source, and acquiring fewer projec-
tion views (angles) aka sparse-view CT. Both approaches yield de-
graded projection data, for which the conventional algebraic filtered
back-projection (FBP) image reconstruction method yields poor im-
age quality. In these settings, statistical image reconstruction (SIR)
methods have been proposed and are popular.
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Most SIR methods involve optimizing a cost composed of a
data-fidelity term accounting for the statistical model of the mea-
surement data and a regularization term modeling prior knowledge
or expected characteristics of the target image. Often a Poisson +
Gaussian model is used for the CT measurements, where the Pois-
son distribution models photon counting statistics and the electronic
noise at the detector is assumed Gaussian. However, the associated
likelihood function in this case lacks an elegant form. An approxi-
mate alternative but popular SIR method is penalized (or regularized)
weighted least-squares (PWLS), where the logarithm of the mea-
surements is modeled as a linear function of the image, up to addi-
tive Gaussian noise with projection view-dependent variance (hence
WLS).

While PWLS works well at regular X-ray doses, it becomes in-
applicable for very low-dose or noisy cases, when measurements
need not be positive, and their logarithm would not exist. Techniques
to resolve this problem include applying zero-weighting (in PWLS)
on the non-positive measurements [1], replacing the non-positive
components by some artificial positive values [2], or corrections us-
ing some recursive mean-preserving operations [3] and interpolation
by sinogram smoothing or denoising [4, 5] to eliminate non-positive
values. Nevertheless, these methods would introduce bias in the re-
constructed image, and the spatial resolution of the reconstruction
would be heavily degraded when the CT dose is ultra-low. More-
over, the correction of non-positive values and the non-linearity of
the logarithm create challenges for estimation of the weighting pa-
rameters in PWLS. To address these challenges, a more robust statis-
tical model for the CT (pre-log) measurements, the shifted-Poisson
model that better approximates the Poisson + Gaussian model was
proposed recently [6–8].

The quality of reconstructed images for SIR methods also de-
pends highly on the efficacy of the image prior (regularizer) in mod-
eling CT image properties. While total variation regularization has
been successfully exploited for low-dose CT image reconstruction,
there has been increasing interest in designing data-driven regulariz-
ers. The parameters of such image priors can be effectively learned
from big data sets. Xu et al. [9] proposed a PWLS approach with
a regularizer promoting sparsity of image patches in a redundant
learned synthesis dictionary. An alternative approach uses a spar-
sifying transform model for image patches, wherein the patches are
assumed approximately sparse in a learned transform domain. In
contrast to the often non-convex and NP-hard synthesis dictionary
learning problems [10, 11] and expensive learning algorithms, ef-
ficient methods have been proposed for learning sparsifying trans-
forms (ST) with good convergence properties [12–14]. Moreover,
sparse coding in the ST model involves simple thresholding, which is
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an exact solution and is less expensive than synthesis sparse coding.
Pfister et al. [15, 16] combined the PWLS method with transform
learning and showed promising results. However, their approach
learns transforms from the limited noisy measurements, which in-
creases computation, and it does not exploit available big databases
for learning the image prior.

Very recently, Zheng et al. [17] proposed a fast PWLS-ST ap-
proach for low-dose CT image reconstruction that uses a transform-
based regularizer with the transform learned offline from a related
dataset. Although the PWLS-ST approach benefits from the learned
sparsifying transform, problems of bias in the reconstructed image
remain due to the intrinsic downsides of the PWLS model. Here,
we propose a new CT image reconstruction framework employing
a shifted-Poisson model for measurements combined with an adap-
tive sparsifying transform-based prior for the image. The adaptive
ST is learned from the patches of images from training CT datasets,
which saves runtime during reconstruction. We refer to the proposed
approach as Penalized-likelihood (PL) with ST regularizer, or PL-
ST. Although the PL-ST objective is highly nonconvex, we present
an efficient alternating optimization algorithm for the problem and
demonstrate its advantages over prior approaches including PWLS
methods in numerical experiments with low-dose CT data.

2. PROBLEM FORMULATIONS

2.1. Low-Dose CT Image Reconstruction Formulation

Our goal is to find the linear attenuation coefficients x ∈ R
Np or

(vectorized) image that best fits the measured CT data y ∈ R
Nd . We

propose to solve the following penalized-likelihood objective func-
tion Φ(x):

x̂ = argmin
x≥0

Φ(x), Φ(x) = −L(x) + R(x), (P0)

where −L(x) is a negative log-likelihood function or data-fidelity
term of the measurements that are modeled as shifted-Poisson ran-
dom variables, i.e., Yi ∼ Poisson{I0e−[Ax]i + σ2}. Here, I0 rep-
resents the number of incident photons per ray from the source, A
is the Nd × Np system matrix for CT, and σ2 is the variance of the
electronic noise. By denoting li � [Ax]i and introducing functions
hi(li) defined as:

hi(li) � (I0e
−li + σ2)− Yi log(I0e

−li + σ2), (1)

the negative log-likelihood is written as

−L(x) =

Nd∑
i=1

hi(li). (2)

The penalty or regularizer R(x) in (P0) is based on a pre-learned
sparsifying transform Ω ∈ R

v×v [13] for image patches as follows:

R(x) � min
{zj}

β

N∑
j=1

{
‖ΩPjx− zj‖22 + γ2

c‖zj‖0
}
. (3)

We assume N vectorized patches, each with v voxels that are ex-
tracted from x, with Pj ∈ R

v×Np being the patch extraction opera-
tor. The subscript j indexes the jth patch. Vector zj ∈ R

v denotes
the sparse approximation in the transform domain of Pjx and the
weight γ2

c (with γc > 0) controls the sparsity level. The �0 “norm”
counts the number of nonzero elements in zj . The positive parame-
ter β in (3) helps balance the data-fidelity term and the regularizer,
providing a trade-off between noise and image resolution.

2.2. Sparsifying Transform Learning

We learn the sparsifying transform Ω from a dataset of patches
extracted from regular dose CT images. This involves solving the
following transform learning problem [12, 13]:

min
Ω,Z

‖ΩX−Z‖2F +λ
(‖Ω‖2F − log | detΩ|)+ N′∑

i=1

γ2‖Zi‖0. (P1)

Here, N ′ is the number of patches used for training, X ∈ R
v×N′

is a matrix whose columns are the vectorized training patches, and

Z ∈ R
v×N′

is a matrix of sparse coefficients, whose columns {Zi}
denote the sparse approximations in the transform domain of the
training patches. The penalty ‖Ω‖2F − log | detΩ| prevents triv-
ial solutions in (P1) and helps control the condition number of the
learned transform [12]. Parameters λ and γ are positive scalars.

3. ALGORITHM

In the following, first we briefly describe the transform learn-
ing algorithm for (P1) and then present the CT image reconstruction
method for optimizing Problem (P0).

3.1. Training Sparsifying Transforms

The transform learning problem (P1) involves optimization with
respect to the variables Ω and Z. We adopt the recent efficient al-
ternating minimization approach for (P1) [13] that is proven to con-
verge to (at least) the local minimizers in the nonconvex problem.
The procedure involves a transform update step (updating Ω) and a
sparse coding step (updating Z), which are discussed next.

3.1.1. Transform update step:

With Z fixed, the optimization with respect to Ω results in the
following sub-problem:

min
Ω

‖ΩX− Z‖2F + λ
(‖Ω‖2F − log | detΩ|). (4)

The optimal solution is computed via a singular value decomposition
(SVD) [13]. Let L be the square root matrix in XXT + λI = LLT ,
where I denotes the identity matrix. Then, denoting the full SVD
of L−1XZT as QΣRT , a global minimizer of (4) is as follows:

Ω̂ = 0.5R(Σ+ (Σ2 + 2λI)
1
2 )QTL−1.

3.1.2. Sparse coding step:

With fixed Ω, we solve (P1) for Z as follows:

min
Z

||ΩX− Z‖2F +

N′∑
i=1

γ2‖Zi‖0. (5)

The optimal Z is computed via thresholding as Ẑi = Hγ(ΩXi) ∀i,
where Hγ(·) is the hard-thresholding operator that sets vector entries
with magnitude below γ to zero and leaves other entries unaffected.

3.2. Optimization Algorithm for (P0)

We optimize the reconstruction problem (P0) with regularizer
(3) by alternating minimization that alternates between updating x
(image update step) and {zj} (sparse coding step). These steps are
discussed next.



3.2.1. Image Update Step
In this step, we fix the sparse codes {zj} and find a non-negative

image x̂ by optimizing the following cost consisting of the negative
log-likelihood and a sparsification error (of patches):

Φ1(x) = −L(x) + β

N∑
j=1

‖ΩPjx− zj‖22. (6)

To optimize Φ1(x), we design a series of quadratic surrogate func-
tions (majorizers) for the shifted Poisson data-fit term −L(x) (which
is not convex when σ2 is nonzero) and minimize the (convex) surro-
gate functions together with the sparsification error using the relaxed
linearized augmented Lagrangian method with ordered-subsets (re-
laxed OS-LALM method) [18].

The image x is updated iteratively, and the majorizer for the
negative log-likelihood in the nth such inner iteration is:

φ(x;xn) = −L(xn) + dh(l
n)A(x− xn)

+
1

2
(x− xn)TATD(ci(l

n
i ))A(x− xn),

(7)

where (·)n represents (estimated) quantities for the nth (inner) it-
eration, and dh(l

n) is a length Nd row vector capturing gradient

information, whose entries are [ḣi(l
n
i )]

Nd
i=1. Matrix D(ci(l

n
i )) is a

Nd-dimensional diagonal matrix whose pivots (diagonal entries) are
curvatures ci(l

n
i ) of the parabola. We use the optimum curvatures

defined as follows [19], where ḧ denotes the second (scalar-valued)
derivative:

ci(l
n
i ) =

{[
2
hi(0)−hi(l

n
i )+ḣi(l

n
i )(lni )

(lni )2

]
+
, lni > 0[

ḧi(0)
]
+
, lni = 0.

(8)

Using the above majorizer, we replace minimizing (6) with iter-
atively minimizing the following problem for each n:

min
x≥0

{
φ(x;xn) + β

N∑
j=1

‖ΩPjx− zj‖22
}
. (9)

For simplicity, we replace the notation D(ci(l
n
i )) with Dn hereafter.

To solve (9), we rewrite (7) as follows:

φ(x;xn) =
1

2

{
(x− xn)TATDnA(x− xn)

+ 2dh(l
n)(Dn)−

1
2 (Dn)

1
2A(x− xn)

+ dh(l
n)(Dn)−

1
2 [dh(l

n)(Dn)−
1
2 ]T

}
− L(xn)− 1

2
dh(l

n)(Dn)−
1
2 [dh(l

n)(Dn)−
1
2 ]T .

(10)

Ignoring constant terms, we get the following equivalent form:

φ(x;xn) ≡ 1

2
‖yn

e −Ax‖2W, (11)

where “≡” means equal to within irrelevant constants independent of
x, yn

e = Axn − (Dn)−1[dh(l
n)]T and W � Dn = diag{ci(lni )}

(we drop the superscript n in W for simplicity). Thus, (9) becomes
the following quadratic problem:

min
x≥0

{
1

2
‖yn

e −Ax‖2W + β

N∑
j=1

‖ΩPjx− zj‖22
}
. (12)

With R2(x) denoting the second term in (12), we optimize (12) us-
ing the relaxed OS-LALM method [18] by iterating over the follow-
ing updates, where for each k, we further iterate over 1 ≤ m ≤ M ,

the M ordered subsets:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s(k+1) = ρ(DAx̃(k) − η(k)) + (1− ρ)g(k),

x̃(k+1) = [x̃(k) − (ρDA +DR)
−1(s(k+1) +∇R2(x̃

(k)))]C ,

ζ(k+1) � MAT
mWm(Amx̃(k+1) − (yn

e )m),

g(k+1) =
ρ

ρ+ 1
(αζ(k+1) + (1− α)g(k)) +

1

ρ+ 1
g(k),

η(k+1) = α(DAx̃(k+1) − ζ(k+1)) + (1− α)η(k).
(13)

The image xn+1 is then updated as the output (x̃ part) of relaxed OS-
LALM, whose iterates are initialized based on the (previous inner
iterate) image xn. In (13), DA is a diagonal majorizing matrix of
ATWA, e.g., DA � diag{|A|T |W||A|1} [17], and [·]C projects
the input vector onto the constraint x ≥ 0. Matrix Am is the subset
forward projection matrix (mth subset of rows of A) and Wm is the
corresponding sub-matrix of W. The (over-)relaxation parameter
α ∈ [1, 2) and ρ > 0 is the AL penalty parameter decreasing with
the subiterations t (function of k and m) in relaxed OS-LALM as

ρt(α) =

{
1 , t = 0

π
α(t+1)

√
1− (

π
2α(t+1)

)2
, otherwise.

(14)

Matrix DR � ∇2R2(x) = 2β
∑N

j=1 P
T
j Ω

TΩPj , e.g., DR �
2β

∑N
j=1 P

T
j Pjλmax(Ω

TΩ), where λmax(Ω
TΩ) denotes the

maximal eigenvalue of ΩTΩ and
∑N

j=1 P
T
j Pj is a diagonal ma-

trix with the diagonal entries corresponding to pixel locations and
with values equal to the number of patches overlapping each pixel.
If periodically positioned overlapping patches with patch stride 1
(pixel) are used in (P0), and patches overlapping image boundaries
are assumed to wrap around the opposite side of the image, then∑N

j=1 P
T
j Pj = vI with v the number of pixels in a patch. In this

case, DR = 2βvλmax(Ω
TΩ)I.

3.2.2. Sparse Coding Step

Here, we update {zj} by solving the following problem with x
fixed to its most recent estimate:

min
{zj}

N∑
j=1

{
‖ΩPjx− zj‖22 + γ2

c‖zj‖0
}
. (15)

The optimal sparse codes ẑj are computed in closed-form via hard-
thresholding in a similar manner as in Section 3.1.2, i.e., ẑj =
Hγc(ΩPjx) ∀ j.

4. NUMERICAL EXPERIMENTS

4.1. Framework

We simulated a 2D fan-beam CT scan using a 1024 × 1024
XCAT phantom slice [20] with Δx = Δy = 0.4883 mm. An
888×984 sinogram was numerically generated with GE LightSpeed
fan-beam geometry and with σ = 5. We reconstructed an image of
size 512× 512 with Δx = Δy = 0.9766 mm.

For training the sparsifying transform, we extracted 8× 8 over-
lapping patches with a stride of 1 × 1 from five 512 × 512 XCAT
phantom slices (different from the testing data). The algorithm in
Section 3.1 for optimizing (P1) was initialized with the 2D DCT (for
Ω) and was run for 1000 iterations to ensure convergence. Several
choices for γ (in (P1)) were tested, and γ = 110 was observed to
provide the best reconstruction results. λ was set to be 5.85× 1014.



 

0

0.002

0.004

0.006

0.008

0.01

 

0

0.005

0.01

0.015

0.02

 

0

0.005

0.01

0.015

0.02

 

0

0.002

0.004

0.006

0.008

0.01

0.012

 

0

0.002

0.004

0.006

0.008

0.01

0.012

 

0

0.002

0.004

0.006

0.008

0.01

Fig. 1: Learned sparsifying transforms (in first column) at γ = 125 (top) and γ = 110 (bottom), with the transform rows shown as 8 × 8
patches. The sparse codes learned in (P0) at I0 = 104 are visualized as images (magnitudes shown) for selected rows (or filters) of the
transforms. Each pixel in the images corresponds to a specific component (corresponding to the specific transform row) of the sparse code of
an image patch.
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Fig. 2: Evolution of the objective function in (P0) and the recon-
struction RMSE for I0 = 2× 103.

Fan-beam CT measurements were generated at different (low)
dose levels (number of incident photons per ray) I0 = 104, 5 ×
103, 3×103, and 2×103. The attenuation was measured in units of
mm−1. For each dose level, we investigated the performance of sev-
eral reconstruction methods: the FBP method, the PWLS statistical
model with a non-adaptive edge-preserving regularizer (PWLS-EP),
the PL model with EP regularizer (PL-EP), the PWLS-ST approach,
and the proposed PL-ST method. The reconstructed images were
evaluated both visually and using the root mean square error (RMSE)
and structural similarity index (SSIM) metrics [9, 21]. For display-
ing the results, the unit mm−1 was converted to Hounsfield unit
(HU). All simulations were run on a workstation with two 2.7 GHz
12-core Intel Xeon E5-2697 processors. The regularizer R(x) =∑Np

j=1

∑
k∈Nj

κjκkϕ(xj−xk) is used for EP methods with ϕ(t) �
δ2(

√
1 + |t/δ|2 − 1) (δ = 2× 10−4mm), Nj is the neighborhood,

and κj denotes parameter encouraging noise uniformity [22]. The
PWLS-EP and PL-EP methods were initialized with the FBP recon-
struction and the regularization parameter β was empirically set in
each experiment to achieve good reconstruction quality.

The PWLS-ST and PL-ST methods (that exploit the learned
transform Ω) used 8 × 8 patches with a stride of 1 pixel, and were
initialized with PWLS-EP reconstructions. The parameters β and γc
for the ST methods were set as 8× 104 and 2× 10−4, respectively,
which worked well in our experiments. Similar to the EP methods,
we used patch-based weights {γ2

c τj} for the �0 terms in (3), where

τj � ‖Pjκ‖1/v with κ (same size as x) whose elements κj are

defined similarly as for the EP methods [22]. Adding patch-based
weights in (3) only modifies the thresholds in the sparse coding step
of the ST-based reconstruction algorithms.

4.2. Behavior of the Proposed Method

This section examines the behavior of the learned sparsifying
transform in the image reconstruction process. The empirical con-
vergence behavior of the algorithm for (P0) is also illustrated.

4.2.1. How do the Learned Models work?

Fig. 1 shows the transforms learned for γ = 125 and γ = 110
in (P1). The rows of the learned Ω are shown as 8 × 8 patches
called transform atoms. The transforms show various directional or
gradient like features adapted based on training data.

To study the effect of the learned models in (P0), we visualize
entries of the learned sparse codes {zj} (in (P0)) corresponding to
specific rows of Ω in Fig. 1. We work with I0 = 104 and show
sparse codes obtained using two different learned transforms (with
γ = 125 and γ = 110). Each pixel in the sparse code image for
a specific transform row corresponds to the sparse coefficient (entry
in zj) for an image patch (the coefficient is placed in the top left
corner of the patch). Because each row of the learned transforms is
applied to all the overlapping image patches and the result is thresh-
olded to generate the patch coefficients, it is clear that the rows of
Ω act like sparsifying filters. The sparse code images capture differ-
ent kinds of edges depending on the characteristics of the transform
row. Some filters capture horizontal edges, while others emphasize
directed edges in the reconstruction. Importantly, the learned trans-
forms with a variety of filters/features ensure very sparse represen-
tations.

The transform Ω learned with γ = 110 led to better reconstruc-
tion quality for the testing data. Hence, we used it in the remainder
of this section.

4.2.2. Convergence of Algorithm for (P0)

Here, we investigate the behavior of the proposed PL-ST scheme
further. Fig. 2 shows the evolution of the objective function (in (P0))
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Fig. 3: Reconstructed images for different methods for I0 = 104, 5× 103, and 3× 103 (top to bottom), respectively. The ground-truth image
is shown as the leftmost image in the first row.

and reconstruction RMSE over the outer iterations (alternations be-
tween image update and sparse coding) of the PL-ST algorithm for
dose level I0 = 2 × 103. In each outer iteration, we ran 5 inner
(n) iterations of image update (surrogate update), where the relaxed
OS-LALM method was run for 3 iterations with 3 ordered subsets.
The cost function for PL-ST converged quickly. The RMSE metric
improved (or decreased) significantly during the initial (100− 200)
iterations, with more iterations providing only a marginal additional
improvement.

4.3. Results and Comparisons

Table 1 shows the RMSE and SSIM values of reconstructions
obtained with various methods for multiple dose levels. It is clear
that the proposed PL-ST method provides the best RMSE and SSIM
values at all doses, with larger improvements achieved over com-
peting methods at smaller dose levels. Both PWLS-ST and PL-ST
outperform the conventional FBP and the non-adaptive PWLS-EP
and PL-EP methods. Importantly, the proposed PL-ST outperforms
PWLS-ST, with nearly 4 HU better RMSE at I0 = 2×103. These re-
sults indicate the superiority of the shifted-Poisson statistical model
and the data-driven transform-based regularization in the proposed
framework.

Fig. 3 shows the ground truth test image and the reconstructed
images for different methods at various dose levels. Clearly, when
the photon dose decreases, the FBP reconstruction shows heavy
streak artifacts and noise. Statistical approaches using the non-
adaptive edge-preserving regularizer, i.e., PLWS-EP and PL-EP,
significantly reduce the artifacts in the FBP result. But the EP re-
sults, especially at low doses, still suffer from high noise and loss of
details such as tissue boundaries. On the other hand, reconstructions
with the proposed PL-ST display reduced noise or artifacts. For
example, in the first row of Fig. 3, the noise is mostly eliminated in

the PL-ST result compared with PWLS-EP or PL-EP, and the tissue
boundaries are clearer. Smaller structures such as blood vessels
(within the central air regions) are also reconstructed better by the
proposed PL-ST at various doses.

Fig. 4 compares the reconstructions for PWLS-ST and PL-ST
at the low dose I0 = 2 × 103. Zoom-ins of the reconstructions
show that PL-ST reconstructs tissue edges better than the PWLS-ST
approach. The reconstruction errors (magnitudes) are also shown in
Fig. 4. Clearly, PL-ST provides much smaller reconstruction errors
for various soft tissues and edges compared to PWLS-ST.

5. CONCLUSION

We presented a novel PL-ST approach for low-dose CT im-
age reconstruction based on a shifted-Poisson likelihood function
and a learned transform-based regularizer. The proposed alternating
algorithm for image reconstruction involves a simple and efficient
sparse coding step and an iterative image update step that optimizes
quadratic majorizing functions (of a nonconvex cost). Numerical ex-
periments with low-dose fan beam CT scans of the XCAT phantom
demonstrate that PL-ST outperforms prior nonadaptive image recon-
struction techniques based on the edge-preserving regularizer, and
moreover outperforms PWLS-ST especially at very low doses. For
future work, we plan to apply the proposed approach to low-dose 3D
CT data and evaluate its performance. Currently PL-ST takes longer
time per outer iteration than PWLS-ST due to the surrogate func-
tion updates. We will investigate accelerating the PL-ST method in
future work.
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Table 1: RMSE in HU and SSIM (at convergence) of reconstructions at various dose levels (I0) using the FBP, PWLS-EP, PL-EP, PWLS-ST,
and PL-ST methods. The best results are in bold.

I0
FBP PWLS-EP PL-EP PWLS-ST PL-ST

RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM

1× 104 141.9 0.414 32.5 0.957 32.8 0.955 29.3 0.968 29.1 0.968
5× 103 199.8 0.384 38.7 0.941 40.1 0.940 34.6 0.964 33.9 0.965
3× 103 257.6 0.378 44.4 0.923 43.4 0.923 40.3 0.956 38.6 0.959
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