
Accelerating Separable Footprint (SF) Forward and Back
Projection on GPU

Xiaobin Xiea,b, Madison G. McGaffinc, Yong Longd, Jeffrey A. Fesslerc, Minhua Wenb, and
James Linb

aDepartment of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai,
200240, China

bCenter for High Performance Computing, Shanghai Jiao Tong University, Shanghai, 200240,
China

cDepartment of Electrical Engineering and Computer Science, University of Michigan, Ann
Arbor, MI 48109 USA

dUniversity of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong
University, Shanghai, 200240, China

ABSTRACT

Statistical image reconstruction (SIR) methods for X-ray CT can improve image quality and reduce radiation
dosages over conventional reconstruction methods, such as filtered back projection (FBP). However, SIR methods
require much longer computation time. The separable footprint (SF) forward and back projection technique
simplifies the calculation of intersecting volumes of image voxels and finite-size beams in a way that is both
accurate and efficient for parallel implementation. We propose a new method to accelerate the SF forward and
back projection on GPU with NVIDIA’s CUDA environment. For the forward projection, we parallelize over all
detector cells. For the back projection, we parallelize over all 3D image voxels. The simulation results show that
the proposed method is faster than the acceleration method of the SF projectors proposed by Wu and Fessler.13

We further accelerate the proposed method using multiple GPUs. The results show that the computation time
is reduced approximately proportional to the number of GPUs.

Keywords: Statistical image reconstruction (SIR), X-ray CT, forward and back projection, separable footprint
(SF), GPU, CUDA

1. INTRODUCTION

Statistical image reconstruction (SIR) methods for X-ray CT improve the ability to produce high-quality and
accurate images, while greatly reducing radiation dosages. However, SIR methods operate with one major
drawback. They need long computation time to process the scanned data and reconstruct a diagnostically useful
image. SIR methods iteratively find the image that best fits the measurement, according to the system physical
model, the measurement statistical model and prior information about the object.

Most SIR methods require one forward projection and one back projection in each iteration. These operations
are the primary computational bottleneck in SIR methods, especially in 3D image reconstruction. Accelerating
forward and back projection is crucial to fast implementation of SIR methods. Numerous approaches have been
proposed to accelerate the forward and back projection using Graphics Processing Unit (GPU). Gao proposed
fast and highly parallelizable algorithms for X-ray transform and its adjoint for the infinitely narrow beam in
both 2D and 3D, but only extended these fast algorithms to the finite-size beam in 2D.1 To extend these fast
algorithms to the finite-size beam in 3D, an efficient 3D formula to compute the intersection volume of the
finite-size beam with each nontrivially intersecting voxel needs to be supplied.1 Xie et al.2 proposed a Fixed
Sampling Number Projection (FSNP) strategy to ensure the operation synchronization in ray-driven forward

Further author information: (Send correspondence to Yong Long)
Yong Long: E-mail: yong.long@sjtu.edu.cn

Medical Imaging 2017: Physics of Medical Imaging, edited by Thomas G. Flohr,
Joseph Y. Lo, Taly Gilat Schmidt, Proc. of SPIE Vol. 10132, 101322S · © 2017 SPIE

CCC code: 1605-7422/17/$18 · doi: 10.1117/12.2252010

Proc. of SPIE Vol. 10132 101322S-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/15/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

projection3 implementation on GPU, and parallelized the voxel-driven back projection method.4 Bippus et al.5

accelerated the blob-driven back projection proposed by Ziegler et al.6 using GPU, but implemented a ray-driven
forward projection to avoid synchronization effort for writing operations due to overlapping blob footprints on
the detector. This method implemented asymmetric projector/backprojector pair, which results in an increasing
mismatch in the sinogram and image space as iteration continues.6 Liu et al.7 implemented a branchless
Distance-Driven (DD) algorithm8 that is highly parallelizable and amenable to vectorization on GPUs.

Separable footprint (SF) forward and back projection technique9 is more accurate14 than the popular distance-
driven (DD) method,10 and has comparable computation speed as the DD method. Many researchers have
implemented the SF projector on GPU to accelerate their own projects.11, 12 Wu and Fessler13 implemented the
SF forward and back projector on GPU with NVIDIA’s CUDA environment. For the SF forward projection,
to avoid writing conflict due to parallelizing arbitrary image voxels, they grouped the image voxels according
to the smallest transaxial coordinates of their footprints and parallelized over voxel groups whose footprints
do not overlap. For the SF back projection, they parallelized over all 3D image voxels to prevent read-write
problems because each thread works on disjoint image voxels. Papenhausen et al. proposed a method that
is able to tune high level implementation details by using the ant colony optimization algorithm to find the
optimal implementation in a relatively short amount of time.14 Using the presented framework, they optimized
the performance of the GPU accelerated SF backprojection implementation by Wu and Fessler.13

We propose a GPU acceleration method to SF forward and back projection using CUDA. For the SF forward
projection, we parallelize over detector cells. From each detector cell, we trace image voxels which contribute
to this detector cell. For the SF back projection, we parallelize over all 3D image voxels. We demonstrate that
our new method has better performance in terms of speed than the acceleration method proposed by Wu and
Fessler.

This paper is organized as follows. Section 2.1 describes the SF projector. Section 2.2 and 2.3 present GPU
acceleration methods for the SF forward and back projection respectively. Section 3 gives results and Section 4
describes conclusions.

2. METHODS

2.1 SF Projector

Any 3D method for forward and back projection in X-ray CT can be described as:13

g(s, t, β) =
∑

x,y,z

a(s, t, β;x, y, z)f(x, y, z), (1)

b(x, y, z) =
∑

s,t,β

a(s, t, β;x, y, z)g(s, t, β), (2)

where f(x, y, z) and b(x, y, z) denote the pixel values and back projection values for 3D image locations (x, y, z)
respectively, g(s, t, β) denotes the projection values in the detector plane, s and t denote the transaxial and axial
directions of the 2D detector plane respectively, β denotes the angle of the source point counter-clockwise from
the y axis, and a(s, t, β;x, y, z) is the blurred footprint function.

The SF method approximates the 2D blurred footprint function a(s, t, β;x, y, z) as the separable product of
1D blurred footprint functions in the axial and transaxial directions,9 i.e.,

a(s, t, β;x, y, z) = v(s, t, β)u(β;x, y)F1(s, β;x, y)F2(t, β;x, y, z), (3)

where F1(s, β;x, y) is the blurred footprint in the transaxial direction, F2(t, β;x, y, z) is the blurred footprint in
the axial direction, and v(s, t, β) and u(β, x, y) are the amplitude functions as described in9 as the “A2” method.
We focus on GPU acceleration of the SF-TR projector where F1(s, β;x, y) is the integration of a trapezoid
footprint function and a rectangular detector blur function and F2(t, β;x, y, z) is the integration of a rectangular
footprint function and a rectangular detector blur function. The acceleration method described in this paper
can be easily extended to the SF-TT projector9 where F2(t, β;x, y, z) is the integration of a trapezoid footprint
function and a rectangular detector blur function.

Proc. of SPIE Vol. 10132 101322S-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/15/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

2.2 SF Forward Projection

Combining (1) and (3), the SF forward projection is

g(s, t, β) = v(s, t, β)
∑

x,y

F1(s, β;x, y)[
∑

z

F2(t, β;x, y, z)f(x, y, z)]u(β;x, y). (4)

For each projection view β, we compute the SF forward projection in three CUDA kernels: transaxial footprints,
axial sum, and ray sum.

In the transaxial footprints kernel, we use Nx × Ny threads to compute the blurred footprint F1(s, β;x, y),
and the smallest and largest vertices of the trapezoid footprint function in the s direction: smin(β;x, y) and
smax(β;x, y). Nx and Ny are the number of image voxels in the x and y directions respectively. For a typical
CT geometry, an image voxel contributes to at most ten detector cells in the s direction, so we use an array of
10×Nx ×Ny to store the blurred footprint F1(s, β;x, y) values.

In the axial sum kernel, we use Nt ×Nx×Ny threads to compute the projection values in the axial direction
for a single projection view. Nt is the number of detector cells in the axial direction. Each thread finds image
voxels that contribute in the axial direction to the associated (t;x, y) location, computes the blurred footprints
F2(t, β;x, y, z) of these image voxels, computes projection values in the axial direction using (5), and weights the
projection values using (6), i.e., the inner-most sum in (4):

p1(t, β;x, y) =
∑

z∈Gz

F2(t, β;x, y, z)f(x, y, z), Gz = {z : t ∈ [tmin(β;x, y, z), tmax(β;x, y, z)]}, (5)

p2(t, β;x, y) = p1(t, β;x, y)u(β;x, y). (6)

Each thread finds the contributing image voxels according to their footprints and the t location associated with
this thread, i.e., t ∈ [tmin(β;x, y, z), tmax(β;x, y, z)]. The projection values p2(t, β;x, y) in the axial direction are
stored in an array of size Nt ×Nx ×Ny.

In the ray sum kernel, we use Nt×Ns threads to compute the forward projection values for all detector cells
where Ns is the number of detector cells in the transaxial direction. Each thread is assigned to one detector cell.
Each thread finds image voxels that contribute to the associated detector cell, accumulates contributions of these
voxels using (7), weights the projection value using (8), and writes the projection value to the corresponding
location in a Nt ×Ns array, i.e.,

g
′
(s, t, β) =

∑

(x,y)∈G

F1(s, β;x, y)p2(t, β;x, y), G = {(x, y) : s ∈ [smin(β;x, y), smax(β;x, y)]}, (7)

g(s, t, β) = v(s, t, β)g
′
(s, t, β). (8)

Each thread needs to find (x, y) locations whose footprints cover the associated detector cell in the transaxial
direction. Depending on projection angle β which determines the relative location between the X-ray source and
x (or y) axis, we determine a primary direction and a secondary direction. If the source is closer to the y axis, the
primary direction is y and the secondary direction is x. If the source is closer to the x axis, the primary direction
is x and the secondary direction is y. Each thread advances along the primary direction from its associated
detector cell towards the source. Along each row of the primary direction, each thread looks the intersecting
voxel and its neighbours along the secondary direction, and checks if the (x, y) locations cast footprints that
cover this thread’s detector cell. If s ∈ [smin(β;x, y), smax(β;x, y)], then the (x, y) location is accumulated using
(7).

We optimize the memory usage in the ray sum kernel. The smin(β;x, y) and smax(β;x, y) values of all the
(x, y) locations are computed in the transaxial footprints kernel and stored in global memory. In the ray sum
kernel, we load the smin(β;x, y) and smax(β;x, y) values from global memory into shared memory, and then read
these values from shared memory when finding contributing (x, y) locations. This memory usage optimization
speeds up the ray sum kernel which is the most time-consuming kernel.

Algorithm 1 summaries the pseudo-code for GPU implementation of the SF forward projection. The CUDA
kernels execute in parallel.

Proc. of SPIE Vol. 10132 101322S-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/15/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

Algorithm 1 PSEUDO-CODE FOR GPU IMPLEMENTATION OF THE SF-TR FORWARD PROJECTOR
WITH THE A2 METHOD (SF-TR-A2)

CPU loop: for each projection angle β:

(a) CUDA kernel transaxial footprints: parfor each x and y (Nx ×Ny):

i. Compute and store F1(s, β;x, y).

ii. Compute and store smin(β;x, y) and smax(β;x, y).

(b) CUDA kernel axial sum: parfor each t, x and y (Nt ×Nx ×Ny):

i. Compute p1(t, β;x, y) in (5)

ii. Compute and store p2(t, β;x, y) in (6)

(c) CUDA kernel ray sum: parfor each t and s (Nt ×Ns):

i. Compute g
′
(s, t, β) in (7):

a. Trace along the primary direction (x or y). For each row of the primary direction (x or y)

- look intersecting voxels and its neighbours along the secondary direction (x or y).

- If smin(β;x, y) ≤ s ≤ smax(β;x, y) then accumulate this (x, y) location using (7).

ii. Compute g(s, t, β) in (8).

2.3 SF Back Projection

Combining (2) and (3), the SF back projection is

b(x, y, z) =
∑

β

u(β;x, y)
∑

t

F2(t, β;x, y, z)[
∑

s

F1(s, β;x, y)g(s, t, β)v(s, t, β)]. (9)

For each projection view β, we compute the SF back projection in three CUDA kernels: transaxial footprints,
transaxial sum and voxel sum. The transaxial footprints kernel is the same as that of the forward projection.

In the transaxial sum kernel, we use Nt × Nx × Ny threads to compute the back projection values in the
transaxial direction. Each thread finds detector cells that contribute in the transaxial direction to the associated
(t;x, y) location, accumulates contributions of these detector cells using (10), weights the back projection value
using (11), and writes the back projection value to the corresponding element in a Nt ×Nx ×Ny array, i.e., the
inner-most sum in (9):

b1(t, β;x, y) =
∑

s

F1(s, β;x, y)g(s, t, β)v(s, t, β), ∀s ∈ [smin(β;x, y), smax(β;x, y)], (10)

b2(t, β;x, y) = b1(t, β;x, y)u(β;x, y). (11)

Each thread finds the contributing detector cells according to their s coordinates and footprint of the (x, y)
location associated with this thread, i.e., s ∈ [smin(β;x, y), smax(β;x, y)]. The transaxial sum kernel is the
adjoint of the ray sum kernel.

In the voxel sum kernel, we use Nx × Ny × Nz threads to compute the back projection values for image
voxels. Each thread finds detector cells that contribute in the axial direction to the associated (x, y, z) location,
calculates a 3D image by back projecting each projection view using (12), and then accumulates those back-
projected images using (13), i.e.,

b(β;x, y, z) =
∑

t

b2(t, β;x, y)F2(t, β;x, y, z), ∀t ∈ [tmin(β;x, y, z), tmax(β;x, y, z)], (12)

b(x, y, z) += b(β;x, y, z). (13)

Each thread finds the contributing detector cells according to their t coordinates and vertices of footprint functions
of the image voxel associated with this thread, i.e., t ∈ [tmin(β;x, y, z), tmax(β;x, y, z)]. The voxel sum kernel is
the adjoint of the axial sum kernel.

Algorithm 2 summaries the pseudo-code for GPU implementation of the SF back projection. The CUDA
kernels execute in parallel.

Proc. of SPIE Vol. 10132 101322S-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/15/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

Algorithm 2 PSEUDO-CODE FOR GPU IMPLEMENTATION OF THE SF-TR BACK PROJECTORWITH
THE A2 METHOD (SF-TR-A2)

1. Initialize image data array to zero: b(x, y, z) = 0

2. CPU loop: for each projection angle β:

(a) CUDA kernel transaxial footprints: parfor each x and y (Nx ×Ny):

i. Compute and store F1(s, β;x, y).

ii. Compute and store smin(β;x, y) and smax(β;x, y).

(b) CUDA kernel transaxial sum: parfor each t, x and y (Nt ×Nx ×Ny):

i. Compute b1(t, β;x, y) in (10).

ii. Compute and store b2(t, β;x, y) in (11).

(c) CUDA kernel voxel sum: parfor each x, y and z (Nx ×Ny ×Nz):

i. Compute b(β;x, y, z) in (12).

ii. Compute b(x, y, z) in (13).

3. RESULTS

To evaluate our proposed GPU acceleration method of the SF-TR forward and back projectors, we compared
it with the GPU method proposed by Wu and Fessler13 and the original CPU implementation.9 We call the
GPU acceleration method proposed by Wu and Fessler13 as the WF method hereafter. We tested the two GPU
methods that are both implemented in CUDA and the original CPU implementation in an ANSI C routine on
a server with two 14-core 2.30GHz Intel Xeon E5-2695 v3 CPUs and two NVIDIA Tesla K80 graphic cards (one
K80 graphic card has two GPUs). We simulated the geometry of a GE LightSpeed X-ray CT system with an
arc detector of Ns = 888 detector columns for Nt = 64 detector rows with Nβ = 984 views over 360◦ for a 3D
object of size Nx= 512, Ny = 512 and Nz = 64 with a resolution of ΔX = ΔY = 0.9766 and ΔZ = 0.625. The
size of each detector cell was ΔS ×ΔT = 1.0239× 1.0964mm2. The source to detector distance was 949.075mm,
and the source to rotation center distance was 541mm.

Table 1 summaries the speed and accuracy comparison of the proposed and the WF method for axial CT. We
measured the accuracy using the normalized root mean square (NRMS) error:

√
1
N

∑N
j=1

(
ŷj−yj

yj
)
2
where yj denotes

the projection value by the original CPU implementation9 and ŷj denotes the projection value by the proposed
or the WF method. The proposed method is about 1.7 times faster than the WF method for both the forward
and back projection. For the back projection, the proposed method has smaller NRMS errors than the WF
method. The WF method used only 3×Nx×Ny×Nt threads rather than Nx×Ny×Nz to implement (12). For
the forward projection, the WF method runs a CPU loop for ten times and uses Nt × [Ns

10] threads to compute
projection values of the associated detector cells in each loop, while the proposed method uses Nt ×Ns threads
to compute projection values for all detector cells.

method Calculation Time (s) NRMS error(%)

forward projection
proposed method 7.2 5.4× 10−7

WF method 12 5.5× 10−7

back projection
proposed method 4.6 2.9× 10−4

WF method 7.7 1.4× 10−2

Table 1. Speed and accuracy comparison of the proposed and the WF acceleration method of the SF-TR
projectors for axial CT

Table 2 shows the computation time of each CUDA kernel in the proposed acceleration method for the SF-TR
forward and back projection. Since the axial sum and ray sum kernel for the forward projection are the adjoints
of the voxel sum and the transaxial sum kernel for the back projection respectively, we group them together in
Table 2. The axial sum and voxel sum kernel have similar computation time, but the ray sum kernel requires

Proc. of SPIE Vol. 10132 101322S-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/15/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

longer computation time than the transaxial sum kernel because the transaxial sum kernel uses more threads
than the ray sum kernel and the ray sum kernel needs to trace contributing voxels in x and y directions.

Calculation Time (s) Forward Projection Back Projection
transaxial footprints 0.17 0.18
axial sum(voxel sum) 2.0 1.8

ray sum(transaxial sum) 5.0 2.5
Table 2. Computation time of each CUDA kernel in the proposed method

Table 3 shows the computation time and accuracy of the proposed acceleration method and the WF method
for helical CT with 8 turns. The test object has a size of Nx = 512, Ny = 512 and Nz = 512. All turns share
the same F1(s, β;x, y), smin(β;x, y) and smax(β;x, y) for a projection angle β of different turns. We only need
to execute the transaxial footprints kernel once for a β and use its results for the same β of other turns. The
results show that the proposed method is 1.3 times faster for the forward projection and 1.6 times faster for the
back projection than the WF method.

method Calculation Time (s) NRMS error(%)

forward projection
proposed method 57 1.7× 10−6

WF method 73 1.9× 10−6

back projection
proposed method 38 3.0× 10−4

WF method 61 1.5× 10−2

Table 3. Speed and accuracy comparison of the proposed and the WF acceleration method of the SF-TR
projectors for helical CT with 8 turns

We used multiple GPUs to further accelerate the proposed method. For the forward projection, we assigned
each GPU a different subset of the views. For the back projection, we divided the object along the x or y direction
into different subsets and assigned each GPU a subset. Table 4 and Table 5 summarize the computation time
of the proposed method using multiple GPUs for axial and helical CT with 8 turns respectively. Due to the
large bandwidth of NVIDIA Tesla K80 GPUs, the time for the transfer of data between CPUs and GPUs is very
short. The computation time is reduced approximately proportional to the number of GPUs.

Calculation Times(s) Forward Projection Back Projection
one GPU 7.2 4.6
two GPUs 3.8 2.4
three GPUs 2.5 1.6
four GPUs 1.9 1.2

Table 4. Computation time of the proposed method using multiple GPUs for axial CT

Calculation Times(s) Forward Projection Back Projection
one GPU 57 38
two GPUs 29 19
three GPUs 19 13
four GPUs 15 10

Table 5. Computation time of the proposed method using multiple GPUs for helical CT with 8 turns

Fig. 1 shows the wall time of original CPU implementation9 of the SF-TR forward and back projection for
the axial CT simulation. Because of the “hyperthreading” of Intel Xeon E5-2695 v3 CPUs, we used up to 56
POSIX threads. Fig. 2 shows the speedup of the original CPU implementation with 1 to 56 threads. The
speedup saturates at 28 threads which is the number of CPU cores. The shortest time is 4.9 seconds using 53
threads for the forward projection and 5.1 seconds using 54 threads for the back projection. Using two GPUs,
the proposed method takes 3.8 seconds for the forward projection and 2.4 seconds for the back projection, which
is 1.3 times faster than the original CPU implementation for the forward projection and 2.1 times faster for the
back projection respectively. One NVIDIA Tesla K80 graphic card with 2 GPUs costs about 5000 dollars and
two 14-core 2.30GHz Intel Xeon E5-2695 v3 CPUs cost about 4900 dollars. With similar cost, the proposed
method is able to achieve much faster computational speed.

Proc. of SPIE Vol. 10132 101322S-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/15/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

Figure 1. Wall time of the original 28-core CPU implementation for axial CT.

Figure 2. Speedup of the original 28-core CPU implementation for axial CT.

4. CONCLUSIONS

We proposed an acceleration method of the SF forward and back projection9 on GPU with NVIDIA’s CUDA
environment. We parallelized over all detector cells for the forward projection and parallelized over all 3D image
voxels for the back projection. We used shared memory to optimize the memory usage in the forward projection,
which speeds up the calculation. Compared with GPU acceleration method proposed by Wu and Fessler,13 our
proposed method increased the degree of parallelism for the forward projection. Simulation results have shown
that the proposed method is faster than the acceleration method proposed by Wu and Fessler. We used multiple
GPUs to further accelerate the proposed method and tested it on 4 NVIDIA Tesla K80 GPUs. The computation
time is reduced approximately proportional to the number of GPUs. We will investigate methods to further
accelerate the SF forward projection in the future.

ACKNOWLEDGMENTS

The authors would like to thank the Center for High Performance Computing of Shanghai Jiao Tong University for
providing the test server with CPUs and GPUs. This work was partially supported by SJTU-UM Collaborative
Research Program, Shanghai Pujiang Talent Program (15PJ1403900), NSFC (61501292) and Returned Overseas
Chinese Scholars Program.

Proc. of SPIE Vol. 10132 101322S-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/15/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

REFERENCES

[1] Gao, H., “Fast parallel algorithms for the x-ray transform and its adjoint,” Medical physics 39(11), 7110-7120
(2012).

[2] Xie, L., Hu, Y., Yan, B., Wang, L., Yang, B., Liu, W., Zhang, L., Luo, L., Shu, H., and Chen, Y., “An
Effective CUDA Parallelization of Projection in Iterative Tomography Reconstruction,” PloS one 10(11),
e0142184 (2015).

[3] Siddon, R. L., “Fast calculation of the exact radiological path for a three-dimensional CT array,” Medical
physics 12(2), 252-255 (1985).

[4] Peters, T. M., “Algorithms for fast back- and re-projection in computed tomography,” IEEE transactions on
nuclear science 28(4), 3641-3647 (1981).

[5] Bippus, R. D., Koehler, T., Bergner, F., Brendel, B., Hansis, E., and Proksa, R., “Projector and backprojector
for iterative CT reconstruction with blobs using CUDA,” Fully 3D 2011: 11th International Meeting on Fully
Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Potsdam, Germany, (2011).

[6] Ziegler, A., Kohler, T., Nielsen, T., and Proksa, R., “Efficient projection and backprojection scheme for
spherically symmetric basis functions in divergent beam geometry,”Medical physics 33(12), 4653-4663 (2006).

[7] Liu, R., Fu L., De Man B., and Yu H., “GPU Acceleration of Branchless Distance Driven Projection and
Backprojection,” Proc. 4th Intl. Mtg. on image formation in X-ray CT, 229-232 (2016).

[8] Basu, S., and De Man, B., “Branchless distance driven projection and backprojection,” Electronic Imaging
2006, 60650Y-60650Y (2006).

[9] Long, Y., Fessler, J. A., and Balter, J. M., “3D forward and back-projection for X-ray CT using separable
footprints,” IEEE Trans. Med. Imag. 29, 1839-50 (Nov. 2010).

[10] De Man, B., and Basu, S., “Distance-driven projection and backprojection in three dimensions,” Physics in
medicine and biology 49(11), 2463 (2004).

[11] Gang, G. J., Stayman, J. W., Zbijewski, W., and Siewerdsen, J. H., “Task-based detectability in CT image
reconstruction by filtered backprojection and penalized likelihood estimation,” Medical physics 41(8), 081902
(2014).

[12] Wang, A. S., Stayman, J. W., Otake, Y., Kleinszig, G., Vogt, S., Gallia, G. L., Khanna, A. J. and Siewerdsen,
J. H., “Soft-tissue imaging with C-arm cone-beam CT using statistical reconstruction,” Physics in medicine
and biology 59(4), 1005 (2014).

[13] Wu, M., and Fessler, J. A., “GPU acceleration of 3D forward and backward projection using separable
footprints for X-ray CT image reconstruction,” Proc. Intl. Mtg. on Fully 3D Image Recon. in Rad. and Nuc.
Med. 6, 021911 (2011).

[14] Papenhausen, E., Zheng, Z., and Mueller, K., “Creating optimal code for GPU-accelerated CT reconstruc-
tion using ant colony optimization,” Medical physics 40(3), 031110 (2013).

Proc. of SPIE Vol. 10132 101322S-8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/15/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

