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ABSTRACT

Techniques involving learned dictionaries can outperform
conventional approaches involving (nontrained) analytical
sparsifying models for MR image reconstruction. Inspired by
iterative dictionary learning-based reconstruction methods,
we propose a novel efficient image reconstruction framework
involving multiple iterations (or layers). Each layer involves
applying a transformation to image patches, thresholding, and
then reconstructing the patches in a dictionary, followed by an
update of the image using observed k-space measurements.
We train the transforms, thresholds, and dictionaries within
the multi-layer algorithm to minimize reconstruction errors.
Our experiments demonstrate that for highly undersampled
k-space data, such trained reconstruction algorithms provide
high quality results.

Index Terms— Sparse representations, Dictionary lear-
ning, Transform learning, Fast algorithms, Thresholding, In-
verse problems, Magnetic resonance imaging, Machine lear-
ning.

1. INTRODUCTION

Image reconstruction in imaging modalities such as magne-
tic resonance imaging (MRI) or X-ray computed tomography,
etc., often involves solving ill-posed inverse problems. MRI
is a popular but relatively slow imaging modality, where me-
asurements are samples in the Fourier space (or k-space) of
the object, and are acquired only sequentially. Subsampling
of k-space data can significantly accelerate MRI.

While conventional image reconstruction methods for li-
mited k-space data [1–5] exploit the sparsity of images in
analytical dictionaries or sparsifying transforms or alterna-
tive properties such as low-rank properties [6], recent research
has demonstrated benefits of learned image models including
synthesis dictionaries [7] and sparsifying transforms [8] for
image reconstruction. The dictionaries or transforms could
be learned from training data [9, 10] and used for image re-
construction, or they could be learned simultaneously while
reconstructing images [7, 11] from limited data. The latter
approach is referred to as blind compressed sensing. For ex-
ample, given k-space data y ∈ Cm, the following problem
can be solved for jointly reconstructing the image x ∈ Cp

and learning a dictionary (often much smaller than the image)
D ∈ Cn×L [7]:

min
x,D∈D,Z

N∑
j=1

‖Pjx−Dzj‖22 + ν‖Ax− y‖22

s.t.
∥∥zj∥∥0

≤ s ∀ j. (1)

Here, A denotes the sensing or measurement operator for the
imaging modality (for MRI with undersampled k-space data,
this is the undersampled Fourier encoding), ν > 0 is a para-
meter set according to noise level in k-space, Pj is an ope-
rator that extracts a patch of image x as a vector Pjx, and
zj denotes the sparse coefficient vector for the patch, with
Pjx ≈ Dzj . Matrix Z ∈ CL×N has the vectors zj as its
columns, and the `0 “norm" counts the number of non-zero
entries in a vector. While Problem (1) uses an `0 sparsity
constraint with parameter s, alternative versions can be rea-
dily constructed using the `1 norm or using sparsity penalties.
The set D denotes the set of feasible dictionaries, e.g., matri-
ces with unit `2 norm columns [12].

Methods for Problem (1) (cf. [7]) start with an initial
image and alternate between learning the dictionary and coef-
ficients (D,Z) (dictionary learning step), and updating the
image (a least squares image update step) to account for the
imaging model y ≈ Ax. These methods tend to be compu-
tationally expensive as they involve learning dictionaries and
sparse coefficients for many image patches in each iteration.

In this work, we propose a novel efficient physics-driven
MR image reconstruction framework involving multiple ite-
rations or layers. In each layer, the method first decorrupts
(removes artifacts) image patches by applying a sparsifying
transform, nonlinearity (shrinkage), and dictionary, and then
performs a least squares update of the image accounting for
the imaging model or physics. The unique aspect of the pro-
posed approach is that we train the parameters (transforms,
dictionaries, and soft-shrinkage functions) of each layer of
the image reconstruction algorithm to explicitly minimize re-
construction errors using training data synthesized by retro-
spective undersampling. The learned algorithm can then be
efficiently applied to reconstruct other test data with finite
number of layers. We present preliminary results for MR
image reconstruction from limited data illustrating the per-
formance of our trained sparsity-driven algorithms.
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2. PROPOSED IMAGE RECONSTRUCTION
METHOD AND TRAINING

We propose an image reconstruction framework that involves
multiple iterations called layers [13], where each layer invol-
ves a decorruption step for image patches, followed by an
image update step accounting for the imaging model. The
decorruption step in the kth layer involves applying a trans-
formation W k ∈ CL×n to image patches, thresholding the
result by soft-thresholding with γk ∈ RL denoting a vector of
thresholds (a different threshold corresponding to each trans-
form row), and multiplying the (sparse) output by a dictionary
Dk ∈ Cn×L. A complex-valued scalar is soft-thresholded as
Sτ (c) = max(|c| − τ, 0)ei∠c for τ ≥ 0.

We train the parameters of the decorruption step in each
layer (Fig. 1) to minimize reconstruction errors. The training
data consists of a collection of reference images reconstructed
from densely (or fully) sampled k-space measurements, and
we retrospectively under-sample these k-space data to gene-
rate subsampled measurements. The first layer requires ini-
tial reconstructions (e.g., A†y, where (·)† denotes pseudoin-
verse of a matrix) as input. We train the dictionary, transform,
and thresholds one layer at a time. Once the parameters for
a specific layer are trained, the training image reconstructi-
ons are passed through that layer and the resulting images are
used for training the subsequent layer. The training for the
kth layer minimizes the error between the decorrupted ver-
sions of (estimated) patches

{
bk−1
l

}
(extracted from training

image reconstructions), and the corresponding training pat-
ches

{
btrain
l

}
(extracted from reference images) by solving

min
Dk∈D,Wk,γk

N ′∑
l=1

∥∥btrain
l −DkSγk(W kbk−1

l )
∥∥2

2
, (2)

where the set D here contains matrices with unit norm co-
lumns. Formulation (2) also appears in prior work [14], but
with the discontinuous hard-thresholding.

For training, we optimize Problem (2) using an efficient
block coordinate descent (BCD) approach. Let Btrain and
Bk−1 denote matrices with patches btrain

l and bk−1
l as co-

lumns. With DkSΓk(W kBk−1) =
∑L
l=1 d

k
l Sγk

l
(gk

T

l Bk−1),
where Gk denotes the transpose of W k and subscript l for
lower-case letters denotes the lth column of a matrix (i.e., dkl
is a column of Dk) or the lth entry of a vector, the proposed
BCD training algorithm updates each variable in the triplet(
dkl , γ

k
l , g

k
l

)
, and cycles over all such triplets.

The dictionary column dkl is updated by solving the fol-
lowing sub-problem, where the residual Ekl , Btrain −∑
j 6=l d

k
jSγk

j
(gk

T

j Bk−1) is fixed based on the most recent
estimates of the other variables:

min
dkl

∥∥∥Ekl − dkl Sγk
l
(gk

T

l Bk−1)
∥∥∥2

F
s.t.

∥∥dkl ∥∥2
= 1. (3)

The dictionary column is updated in closed-form [15] (using

sparse multiplications) as follows:

d̂kl =
Ekl Sγk

l
(gk

T

l Bk−1)∥∥∥Ekl Sγk
l
(gk

T

l Bk−1)
∥∥∥

2

(4)

The (non-negative) soft-threshold γkl and the transform row
gk

T

l are updated by minimizing the same objective as in (3),
and using sub-derivative descent with backtracking line se-
arch (for step sizes). This approach ensures monotonic decre-
ase of the cost in (2). The gradients with respect to γkl and
gk

T

l are as follows:

∂φ

∂γkl
=−2Re

((
Sγk

l
(fkl )−dk

T

l Ekl

)
�1|fk

l |>γ
k
l
�sign∗

(
fkl
))

1

∂φ

∂gk
T

l

=
(
2hkl −2iγkl Im(hkl )�

∣∣fkl ∣∣+2iγkl h
k∗

l �ckl
)

�1|fk
l |>γ

k
l
×
(
Bk−1

)H
,

where φ denotes the objective in (3); fkl , gk
T

l Bk−1,
hkl , Sγk

l
(fkl ) − dk

T

l Ekl , and ckl , Im(fkl ) � sign(fkl ) �(∣∣fkl ∣∣� ∣∣fkl ∣∣); 1 denotes a column vector of ones; 1|fk
l |>γ

k
l

and sign(·) denote the indicator function (value 0 when condi-
tion is violated and 1 otherwise) and complex phase computed
element-wise; � and � denote element-wise multiplication
and element-wise division; (·)∗ denotes complex conjugate;
Re(·) and Im(·) denote real and imaginary parts, respectively;
and i denotes the imaginary number.

Once the multi-layer algorithm is trained, the learned ope-
rations can be applied to reconstruct test images from (un-
dersampled) k-space data. This reconstruction approach re-
peatedly solves the following least-squares image update pro-
blem using the trained models and the measured data y:

min
x

N∑
j=1

‖Pjx−DkSγk

(
W kPjx

k−1
)
‖22+ν‖Ax−y‖22. (5)

For example, in the case of single coil Cartesian sampled
MRI, assuming all maximally overlapping image patches (in-
cluding patches that wrap around image boundaries) are used,
the least squares solutions can be computed cheaply using
FFTs [7]. The proposed simple multi-layer procedure is so-
mewhat reminiscent of layers in a deep neural network, but
the connections here are guided by both MR physics in the
system matrix A and data y as well as the trained transforms
and dictionaries, and trained soft-thresholding operators. Our
framework differs from recent works [16, 17] that learn a de-
noised reference image for use with MRI reconstruction.

3. RESULTS AND DISCUSSION

3.1. Experimental Setup

We work with a multi-slice dataset with 32 slices, each 512×
512 provided by Michael Lustig, UC Berkeley, and apply
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Fig. 1. Schematic for training an image reconstruction al-
gorithm with kmax layers. Fully-sampled k-space data of re-
ference or training MR images are assumed given. The k-
space data are then retrospectively undersampled to generate
a dataset {yi}Mi=1 of k-space measurements. The image re-
construction algorithm involves multiple iterations or layers,
with each layer involving a decorruption step and an image
update step. We train the transform, vector of thresholds for
transform rows, and dictionary in each decorruption step to
minimize the error between the decorrupted and reference or
training patches. The image update step updates the image
using information from the measured k-space.

the optimal sampling strategy in compressed sensing, called
multi-level sampling [18, 19]. We trained the reconstruction
algorithm in Fig. 1 with 20 layers based on four slices. We
simulated 10%, 20%, and 30% undersampled (single coil) k-
space imaging data during training. Fig. 3 shows the tenfold
multi-level sampling pattern (feasible for 3D imaging). We
used the following settings during training: 64 × 256 dictio-
naries and 256 × 64 transforms; 30 BCD iterations to mini-
mize (2) in each layer; 4 inner descent iterations for γkl and
gkl updates during each BCD iteration; and 50,000 randomly
selected image patches to train the dictionary, transform, and
thresholds in each layer.

3.2. Results and Discussion

Fig. 2(a) shows that the average peak-signal-to-noise ratio
(PSNR) of the images reconstructed while training the al-
gorithm improves as the number of layers (iterations) is in-
creased. The first layer itself markedly improved the recon-
struction quality compared to the initial zero-filling image es-
timates, and subsequent layers further substantially improved
image quality for the training data. Fig. 2 shows the trained
dictionary, transform, and soft-thresholds for the first layer,
with the dictionary columns and transform rows shown as
8 × 8 patches. The soft-thresholds for different rows of the
transform are quite different, as are the atoms or rows of the

Table 1. PSNR (dB) values (computed using complex ima-
ges) corresponding to zero-filling and Sparse MRI recon-
structions, and for the proposed method, shown for different
sampling ratios (SR).

Test image SR Zero-filled Sparse MRI Trained

#1
30 % 26.0 27.3 29.0
20 % 24.9 26.3 28.3
10 % 23.7 25.0 27.2

#2
30 % 25.2 26.4 27.9
20 % 24.2 25.4 27.1
10 % 23.1 24.3 26.3

transform and the dictionary columns that display many inte-
resting geometric features.

We applied the trained algorithm to reconstruct different
test slices. Fig. 3 shows the reconstruction results and recon-
struction errors for the proposed method and for the conven-
tional Sparse MRI technique [1, 20] with wavelets and total
variation sparsity (using built-in parameters, which worked
well). The trained algorithm achieves better reconstruction
accuracy and image sharpness than Sparse MRI for highly
undersampled (10x) measurements. Table 1 shows the PSNR
values for two test slices using different methods at multiple
undersampling factors. The proposed trained method achie-
ves the best PSNR values in all cases.

4. CONCLUSIONS

We presented a new image reconstruction framework invol-
ving multiple iterations or layers, with trained models in each
layer. The transforms, thresholds (for nonlinearities), and
dictionaries in each layer were learned using an efficient block
coordinate descent algorithm to minimize reconstruction er-
rors for training data. The learned algorithm is then applied
to reconstruct test data with finite number of layers (or iterati-
ons). Our approach works well for MR image reconstruction
from highly undersampled k-space measurements. More de-
tailed experiments and exploration of other useful properties
(e.g., orthogonality, etc.) for the dictionary (and transform) in
the proposed algorithm will be pursued in future work. We
also plan to explore other applications such as image recon-
struction in low-dose X-ray computed tomography in future
work.
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Fig. 2. Results from training the reconstruction algorithm with 20 layers at 10 fold undersampling of k-space. (a) Average
PSNR (computed between magnitudes of reconstructed and reference images) in decibels (dB) for the training images for each
iteration/layer (average PSNR of the initial zero-filling reconstructions is 26.0 dB). Trained models in the first layer: (b) real
and (c) imaginary parts of the 64× 256 dictionary; (d) thresholds for soft-thresholding for transform rows; and (e) real and (f)
imaginary parts of the 256× 64 transform. Dictionary and transform atoms are shown as 8× 8 patches.
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Fig. 3. Results with the trained MRI reconstruction algorithm (only magnitudes of complex-valued images are displayed): (a)
Reference test image (peak intensity of 316.2); (b) k-space sampling mask with 10 fold undersampling [18]; (c) reconstruction
with Sparse MRI [1] using Wavelets and Total variation sparsity (PSNR = 25.0 dB); (d) reconstruction error map for Sparse
MRI; (e) reconstruction with trained algorithm (PSNR = 27.2 dB); and (f) reconstruction error map for the proposed trained
method. The error map is obtained as the magnitude of the complex difference between the reconstructed and reference images.
PSNR here is computed from the norm of the error maps.
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