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ABSTRACT

Sparsity-based techniques have been popular in many applications
in signal and image processing. In particular, the data-driven adap-
tation of sparse signal models such as the synthesis model has shown
promise in applications. However, dictionary learning problems are
typically nonconvex and NP-hard, and the usual alternating mini-
mization approaches for learning are often expensive and lack con-
vergence guarantees. In this work, we investigate efficient meth-
ods for learning structured synthesis dictionaries. In particular, we
model the atoms (columns) of the dictionary, after reshaping, as low-
rank. We propose a block coordinate descent algorithm for our dic-
tionary learning model that involves efficient optimal updates. We
also provide a convergence analysis of the proposed method for a
highly nonconvex problem. Our numerical experiments show the
usefulness of our schemes in inverse problem settings, such as in
dynamic MRI and inpainting.

Index Terms— Dictionary learning, structured models, sparse
representations, convergence analysis, inverse problems.

1. INTRODUCTION

The sparsity of signals and images in a transform domain or dictio-
nary has been extensively exploited in applications such as compres-
sion, denoising, and inverse problems in imaging and image pro-
cessing. In particular, the data-driven adaptation of sparse signal
models such as the synthesis model has shown promise in numer-
ous applications [1-4]. Given a set of signals (or vectorized image
patches) {yi}ﬁvzl that are represented as columns of a training matrix
Y € C"*¥, the goal of dictionary learning (DL) is to learn a dictio-
nary D € C"*”7 and a matrix X € C7*" of sparse codes such that
Y ~ DX. The DL problem is often formulated as follows [5]:

(PO) min Y — DX|% st [ailly <s Vi, [lds]l, = 1V,

where z; and d; denote the ¢th column of X and the jth column (or
atom) of D respectively, and s denotes a target sparsity level for each
signal. The ¢y “norm" measures sparsity and counts the number of
non-zero entries in a vector. The columns of D are set to unit norm
to avoid the scaling ambiguity [6]. Various alternative versions of
(PO) exist that replace the o “norm" with other sparsity-promoting
functions, or enforce additional properties on the dictionary [7-9],
or enable dictionary learning in an online manner [10].

Dictionary learning algorithms [5, 10-14] typically attempt to
solve (P0) or its variants in an alternating manner by performing
a sparse coding step (updating X)) followed by a dictionary update
step (updating D). Some algorithms also partially update the coeffi-
cients in X in the dictionary update step, while a few recent methods
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attempt to solve for the variables jointly and iteratively [15]. How-
ever, (P0) is non-convex and NP-hard, and most popular algorithms
such as K-SVD [5] lack proven convergence guarantees, and tend
to be computationally expensive. Some recent works [16—19] have
studied the convergence of specific DL algorithms (typically making
restrictive assumptions such as noiseless data, etc., for their conver-
gence results), but these approaches have not been demonstrated to
be advantageous in applications such as inverse problems. Bao et
al. [18] find that their method, although a fast proximal scheme, de-
noises less effectively than K-SVD.

In this work, we propose a novel framework for structured dic-
tionary learning. We model the atoms of the dictionary, after re-
shaping them into matrices, as low-rank. We also use an £ sparsity
penalty for the coefficients. Although the proposed DL formulation
is highly nonconvex, we develop an efficient block coordinate de-
scent algorithm for it and present a convergence analysis for the ap-
proach. Our numerical experiments demonstrate the suitability and
usefulness of learning low-rank atom dictionaries in applications (in-
verse problems) involving limited data.

2. PROBLEM FORMULATION AND ALGORITHM

This section presents our DL problem formulation with structured
(low-rank) atoms and an efficient algorithm for it.

2.1. Dictionary Learning Problem Formulation

‘We consider a dictionary learning formulation with a sparsity penalty
in this work. In particular, we define C 2 X" in (PO), and replace

the £o “norm" constraints with an overall sparsity penalty || X||, £

DRI lz:ll, = ICIl, = Z‘j]:l llcilly- In addition, we consider a
form of structured dictionary learning for image or video patches,
wherein the columns d; € C™ of D, after being reshaped into matri-
ces, are low-rank. We refer to this as the DIctioNary with 10w-ranK
AToms (DINO-KAT) model. When the training matrix Y consists of
vectorized versions of n; X na (with n = ning) image patches, the
dictionary atom vectors are reshaped (by stacking column-wise the
vector entries) into similarly sized matrices. Spatiotemporal (3D)
patches of videos typically have correlations along the time axis,
and so may be well represented by a dictionary with low-rank space-
time (reshaped) atoms. Denoting by R(-) the operator that reshapes
an atom into a matrix, our problem formulation for DL is as follows:

(P1) min ||y = DC[[7 +23*(|C],

s rank (R(d)) < 7. dslly = 1, llegll < V5. ()
Here, A> with A > 0, is a sparsity regularization parameter and
r > 0 denotes the maximum allowed rank for reshaped atoms.

The objective in (P1) is invariant to joint scaling of any pair
(dj, c;) as (adj, e 'c;), for a # 0. Therefore, similar to Problem
(PO), the constraint ||d;||, = 1 helps remove this scaling ambiguity.
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The ¢ constraints in (P1) prevent pathologies that could theoreti-
cally arise (e.g., unbounded algorithm iterates) due to the objective
being non-coercive [20]. In practice, we set L very large, and the
constraint is typically inactive.

Unlike the sparsity constraints in (PO), Problem (P1) penalizes
the number of non-zeros in the (entire) coefficient matrix, allowing
variable sparsity levels across the training signals. For example, in
imaging or image processing applications, the dictionary is usually
learned on (overlapping) image patches. Patches from different re-
gions of an image typically contain different amounts of information,
and thus enforcing a fixed or common sparsity for various patches (as
in (P0)) does not reflect typical image properties (i.e., is restrictive)
and usually leads to poor performance in applications.

When 7 = min(ni,nz) for R(d;) € C**"2, the rank con-
straints in (P1) are inactive, and Problem (P1) corresponds to an
unstructured DL formulation [20]. Structured DINO-KAT models
(i.e., with small rank r) learned using (P1) may be less prone to
over-fitting problems in applications involving limited or corrupted
data. We illustrate this through some applications in Section 3.

2.2. Algorithm and Computational Cost

We propose an iterative block coordinate descent method [21] for
(P1) that updates the coefficient columns c¢; (of C') and atoms d; (of
D) sequentially. Specifically, foreach 1 < j < J, we first solve (P1)
with respect to c;, keeping the other variables fixed (sparse coding
step). Once c; is updated, we solve (P1) with respect to d;, keeping
all other variables fixed (dictionary atom update step).

2.2.1. Sparse Coding Step

Here, we minimize (P1) with respect to c;. This leads to the follow-
ing problem, where the matrix E; £ Y — 3, » dyct! is computed
using the most recent estimates of other atoms and coefficients:

. 2
min ||, — dyef! |2+ 3 lleslly st flegllg <L @
J

The solution to the above sparse coding problem is stated in the fol-
lowing proposition. Its proof is identical to that for Proposition 1
in [20]. The thresholding operator H (-) is defined as follows, where
b € CV and the subscript 4 indexes vector entries:

0, [bi] < A

We choose L > A here and let 15 denote a vector of ones of length
N. The operation “®" denotes element-wise multiplication, and z =
min(a, u) denotes element-wise minimum. For a vector ¢ € cN,
e?4¢ € CV is computed element-wise, with “~/” denoting the phase.

Proposition 1 Suppose L > ), and given E; € C"*Y and d; €
C", a global minimizer of Problem (2) is

& =min (|Hy (EPd))|, Lly) © 954, (@)

This solution is unique if and only if the vector E']H d; has no entry
with magnitude exactly equal to \.

2.2.2. Dictionary Atom Update Step

In this step, we optimize (P1) with respect to the atom d;, holding
other variables fixed, leading to the following problem:

min | B —d;el?||% st rank (R(d)) <7, [ldjll, = 1. (5)
J
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The following Proposition 2 provides the solution to Problem (5). It
relies on the full singular value decomposition (SVD) of an appro-
priate matrix. We assume R(d;) € C™ "2, and let o; denote the
ith entry on the main diagonal of the matrix X.

Proposition 2 Given E; € C**" and ¢; € C~, let U, S V,7 de-
note an optimal rank-r approximation to R (Ejc;) € C™*"2 that
is obtained using the r leading singular vectors and singular values
of the full SVD R (E;c;) & USVH. Then, a global minimizer in
Problem (5), upon reshaping, is

Ups v
R(dy) = { feme s e #0
W, ifc; =0

6

where W is the reshaped first column of the n X n identity matrix.
The solution is unique if and only if c; # 0, and o > ory1 OF
o, =0.
Proof: First, because ||d;||, = 1, the following result holds:
2
| B; — dicl || = |1 Eill % + llcsll; — 2Re {dejcj} @)
Upon substituting (7) into (5), Problem (5) simplifies to
H
dr]neaé Re {tr (R(d;)" R (Ejc;))} s.t. rank (R(d;)) <,
ldjlly = 1. ®)
Next, let R(d;) = GTB¥, and R (E;c;) = USV* be full SVDs,
with ; and o; the entries on the main diagonals of I" and ¥, respec-
tively. The problem then becomes
T ~H H
max rgg( Re {tr (BF GUUXV )} )
s.t. rank(D) <7, ||, =1,G"G=1,B¥B=1I.

For the inner maximization, we use Re {tr (BFTGH UsvH )

tr (FTE) [22], with the upper bound attained with G = U and B
V. The remaining problem with respect to I is then

<

max

Yioi st Y i =1,9=0,Vj>r. (10
{vi} 1 =1

i=

Using the Cauchy Schwarz inequality, % = o3/+/>_;_, o2 for 1 <
i < r,and 4; = 0 for¢ > r is clearly optimal. The derived solu-
tion for the optimal R((fj) then simply corresponds to a normalized
version of the rank-r approximation to R (Ejc;). Clearly, the so-
lution in (8) is unique if and only if E;c; # 0, and 0, > ory1 OF
or = or41 = 0. Any d € C" satisfying the constraints in (8) is a
(non-unique) minimizer when Ej;c; = 0. In particular R(d;) = W
works.

Lastly, to complete the Proposition’s proof, we show that
Ejc; = 01in our algorithm if and only if ¢; = 0. Since c; here was
obtained as a minimizer in the preceding sparse coding step (2), we
have the following result V ¢ € CV with ||¢||, < L and d; denoting
the jth atom in the preceding sparse coding step:

~ 2 ~ 2
E; — dicl |7 + X lleslly < || Bj — djic™ ||+ A2 llelly - (11)
If Ejc; = 0, the left hand side above is || E; || % + [|c; |2 +A2 [l¢;l,»

which is clearly minimal when ¢; = 0. Thus, when E;c; = 0, we
must havec; =0. W



2.2.3. Overall Algorithm and Computational Cost

The overall block coordinate descent DINO-KAT algorithm involves
J sparse coding and dictionary atom update steps in each outer iter-
ation. Assuming J « m and N > J,n, the cost per iteration of
the algorithm scales as O(Nn?). This cost is dominated by various
matrix-vector products. The costs of the truncated hard-thresholding
(4) and low-rank approximation (6) steps are negligible. The per-
iteration cost for our method is lower than that for learning an n x J
dictionary D in (P0O) using K-SVD [5,23], which scales (with s < n
and J o n) as O(Nn®). Our algorithms also converge quickly in
practice and outperform K-SVD in applications [20].

2.3. Convergence of DINO-KAT Learning Algorithm

We briefly present results on the convergence behavior of the pro-
posed algorithm. The proofs of the results in this section follow
using similar arguments as in the proofs of related results in [20].

The constraints rank (R(d;)) < r, ||d;]|, = 1, and ||¢;|| . < L
in (P1) can instead be added as penalties in the cost by using bar-
rier functions ¢(d;), x(d;), and ¢ (c;), respectively, that take the
value +o0o when the corresponding constraint is violated, and are
zero otherwise. Problem (P1) is then written in unconstrained form
with objective

g(C, D) = g(C1, ...,Cj,d1, ...,dj) = HY - DCHHi,

J
Y AN leslly + 8(dy) + x(d) +9(c;)} (12

j=1
We have the following monotonicity and consistency result.

Theorem 1 Let {Ct, Dt} denote the iterate sequence gener-
ated by the algorithm with training data Y € C™*Y and initial
(C°, D°). Then, the objective sequence {g'} with g* £ g (C*, D*)
is monotone decreasing and converges to a finite value, say g* =
g*(C°, D°). Moreover, the iterate sequence {Ct, Dt} is bounded,
and all its accumulation points are equivalent in the sense that they
achieve the same objective value g*.

Theorem 1 establishes that for each initialization, all the ac-
cumulation points of the (bounded) iterate sequence of the algo-
rithm achieve the same value g of the objective, and are equivalent.
(g™ could vary with initalizations.) Because the distance between a
bounded sequence and its compact set of accumulation points con-
verges to zero, we have the following corollary.

Corollary 1 For each (CO7 DO), the iterate sequence in the algo-
rithm converges to an equivalence class of accumulation points.

Finally, the following theorem establishes that the iterates in our
algorithm converge to the set of critical points [24] (or generalized
stationary points) of g(C, D). Here, o), denotes the kth singular
value in the full SVD of a matrix.

Theorem 2 Let {C’t7 D‘} denote the bounded iterate sequence in
the algorithm with training data'Y and initial (C°, D®). Suppose
each accumulation point (C, D) of the iterate sequence is such that
for each 1 < j < Jwith E; &Y — DCY + djcf, the vec-
tor EJde has no entry with magnitude \, and o, (R (EjCj)) >
ort1 (R(Ejcj)) or ov (R(Ejcj)) = 0. Then, every accumulation
point of the iterate sequence is a critical point of g(C, D). Moreover,
the sequences with terms ||Dt — D‘71HF and ||Ct —ct! HF re-
spectively, both converge to zero.
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Fig. 1. Images: Barbara, Boat, Hill, and a Microscopy image [25].
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Fig. 2. DL Algorithm behavior: (a) Objective function; (b) NSRE;
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Theorem 2 says that | D* — D*7'||,, — 0 and [|C* — C*7|| .
— 0, which are necessary but not sufficient conditions for the con-
vergence of the sequences {Dt} and {Ct}. Although Theorem 2
assumes simple conditions (e.g., nondegenerate singular values) on
the accumulation points, we conjecture that these conditions hold for
each accumulation point with probability 1 when the training signals
are drawn i.i.d. from an absolutely continuous probability measure.

3. NUMERICAL EXPERIMENTS

This section presents numerical results illustrating the convergence
of the proposed DL method and its application to inverse problems.

3.1. Convergence Behavior

To study the practical convergence behavior of the proposed algo-
rithm for (P1), we extracted 3 x 10* training patches of size 8 x 8
from randomly chosen locations in the images Barbara, Boat, and
Hill shown in Fig. 1. We used (P1) with A = 69 to learn a 64 x 256
dictionary for the data, with reshaped atoms of size 8 x 8. We set
C° =0, and D" to be the overcomplete DCT [1,26].

Fig. 2 shows the behavior of the algorithm for various choices of
atom rank r. The objective in (P1) converged (Fig. 2(a)) monotoni-
cally and quickly over the iterations. Fig. 2(b) shows the normalized
sparse representation error (NSRE) ||Y - DpcH || 7/ 1Yl for the
data. (The sparsity ||C||, /Nn stayed at about 3% during the al-
gorithm iterations for all choices of r.) The NSRE improved sig-
nificantly beyond the first iteration, indicating the success of the
proposed DL scheme. Importantly, the NSRE values achieved for
small values of r (DINO-KAT cases) are very similar to the value in
the full-rank (r = 8) case. This suggests that the low-rank model
on reshaped dictionary atoms, despite being a constrained model,
can effectively model properties of natural images. Lastly, both
| D" — D', (Fig. 2(c)) and ||C* — C*7!||,. (Fig. 2(d)) con-
verge towards 0, as predicted by Theorem 2, with quicker conver-



[ Case | Initial | Cubic | Fixed D [ r=8 [r=3 [r=2 ] r=1
50% | 111 [ 369 348 37.9 379 37.9 379
30% | 97 349 319 35.6 35.9 36.0 35.9
20% | 9.1 334 30.2 34.6 349 348 348
10% | 86 31.0 2738 323 323 324 326

Table 1. Inpainting PSNR values in dB (at various percentages of
measured pixels) for the initial image (Aty), the result with cubic
interpolation, the results using (P2) withr = 1,7 = 2, r = 3, and
r = 8, and for the reconstruction obtained with fixed D (initializa-
tion) in our algorithm. Results are for the Microscopy image. The
best PSNRs are marked in bold.

gence observed for the low-rank case as there are fewer degrees of
freedom to learn.

3.2. Inverse Problem: Blind Compressed Sensing

In compressed sensing (CS) [27], the goal is to recover an image
x € CP from its measurements y = Ax + h, where A € C™*? with
m < pis aknown sensing matrix, and h denotes noise. CS methods
reconstruct the image (or video) by modeling it (or its patches) as
sparse in a known transform or dictionary. Here, we consider blind
compressed sensing (BCS) [28], where the sparse model is assumed
unknown a priori. The image and the model are jointly estimated in
BCS. We propose the following BCS problem based on (P1):

N
. 2 2 2
(P2) i, vllAz =yl + 3 I1Pw = Dhlls + X113,
=

st |[bill o < L, rank (R(d;)) <7, [[djll, = 1V, 5.

Here, P;x is a (vectorized) patch of x, and B is a matrix with sparse
codes b; as its columns. We propose an algorithm for (P2) that al-
ternates between updating (D, B) and z. In the first step, x is fixed,
and the problem reduces to DL using (P1). The second step involves
a simple least squares problem in x that can be solved either directly
or using iterative solvers such as the proximal gradient method.

Here, we study the usefulness of (P2) for dynamic MRI (dMRI)
and compressive scanning electron microscopy (SEM) [29].

A) Compressive SEM. We consider the SEM image [25] in Fig.
1 and simulate CS (inpainting) by sampling a subset of image pixels.
We used (P2) with a 64 x 20 D learned on 8 x 8 overlapping image
patches using 100 alternations between (D, B) and z with v = 107
and A = 0.05. (We use larger X values during initial alternations,
which accelerates convergence.) We update (D, B) using 1 iteration
of the algorithm for (P1). We set the initial x = ATy, the initial
B = 0, and the initial D was a 64 x 20 DCT (generated as in [26]).

Table 1 shows the PSNR values at various undersampling fac-
tors for reconstructions obtained using our method, and with cubic
interpolation (using Matlab’s griddata function), and using the pro-
posed method with fixed D (fixed to initialization). The proposed
BCS scheme clearly achieves better reconstructions compared to
cubic interpolation or conventional CS (fixed D). Importantly, in
cases involving very limited data, enforcing the low-rank constraint
(r = 1,2, 3) on reshaped (8 x 8) dictionary atoms leads to better
PSNRs compared to the unstructured (r = 8) case.

B) CS Dynamic MRI. We perform simulations with the multi-
coil Cartesian-sampled cardiac perfusion data used in prior work
[30]. Fully-sampled data with an image matrix size of 128 x 128 and
40 temporal frames were retrospectively undersampled (in k-t space)
using a different variable-density random Cartesian undersampling
pattern for each time frame. We use normalized root mean square
error (NRMSE), defined as ||%recon — @ref ||y / || Zref ||, Where e
is a reference reconstruction computed from the fully-sampled data
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DINO-KAT MRI

Reference

F7

F13

Fig. 3. 8x undersampling: Frames 7 and 13 of the proposed DINO-
KAT MRI (r = 1) reconstruction along with the reference frames.

\ Acceleration [ 4 [ sx [ ix [ ex [ 20x [ 24x |
NRMSE (L+S) % 1093 | 1400 | 1580 | 18.87 | 21.33 | 2336
NRMSE (Fixed D) % | 1129 | 1376 | 1533 | 1831 | 2077 | 22.82
NRMSE (r = 5) % 10.85 | 13.08 | 1437 | 17.01 | 19.19 | 2135
NRMSE (r= 1) % 1057 | 1290 | 1420 | 16.77 | 18.74 | 2091
Gainover L+S (dB) | 029 | 0.71 0.92 1.03 113 | 096
Gainoverr=5(dB) | 023 | 012 | 010 | 013 | 021 0.18

Table 2. NRMSE values at several acceleration (undersampling)
factors for the L+S method [30] and for the algorithm for (P2) with
r = 5 (full rank), r = 1 (DINO-KAT MRI) and fixed D (DCT)
cases. The best NRMSE values for each acceleration factor are
marked in bold, and the improvements (gain) provided by DINO-
KAT MRI are indicated in decibels (dB).

and Zrecon the reconstruction from the undersampled data, as our
performance metric. We compare the performance of the proposed
method to that of the recent L+S method [30, 31], where the dy-
namic data is modeled as a sum of a low-rank (L) and a sparse (S)
(with respect to a temporal Fourier transform) component. For the
L+S method, the parameters Az, and Ag were tuned to obtain good
NRMSE in our experiments. For the proposed method for (P2), we
use spatiotemporal patches of size 8 x 8 x 5 with spatial and tem-
poral patch overlap strides of 2 pixels, v = 66.67, A = 0.025, and
we initialize the algorithm by setting x to be the output of the L+S
method, D to be the 320 x 320 DCT matrix, and B = 0.

Table 2 lists the NRMSE values for conventional L+S [30] and
the proposed DINO-KAT MRI (r = 1 and 64 X 5 (space-time) re-
shaped atoms) method at various undersampling factors. The NRM-
SEs achieved by the algorithm for (P2) with fixed D (DCT) and for
the adaptive r = 5 (full rank) case are also shown. DINO-KAT MRI
with rank-1 atoms provides the best reconstruction errors for each
undersampling factor tested. In particular, it provides improvements
up to 1.13 dB over the L+S method and up to 0.23 dB over the full
rank = 5 case. Figure 3 shows two representative frames of the
DINO-KAT MRI reconstruction from 8x undersampled data. The
reconstructed frames are visually very close to the reference frames.

4. CONCLUSIONS

This paper investigated a novel framework for structured dictionary
learning with low rank (reshaped) atoms. We adopted an efficient
algorithm for {y-based dictionary learning and presented theoretical
and empirical convergence results for the method. Our experiments
showed the promise of our schemes in inverse problem settings. In
general, the effectiveness of the low rank atom model in applications
would depend on the properties of the specific underlying data.
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