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ABSTRACT

We propose an efficient online reconstruction algorithm for
the problem of highly undersampled dynamic magnetic res-
onance imaging (DMRI). Our approach reconstructs the dy-
namic time series by processing only a small batch of frames
at a time. We adapt an online subspace tracking algorithm
based on manifold optimization to the DMRI reconstruction
setting and propose a novel extension of the algorithm to en-
able robust subspace tracking based on a local low-rank plus
transform sparse model. Our experiments on real and syn-
thetic data show that proposed approach gives comparable re-
sults to methods that reconstruct the entire image series at
once while requiring only a fraction of the memory and com-
putational demand. The dramatic memory savings allows ro-
bust subspace-based methods to be applied to much larger
datasets than previously allowed.

Index Terms— Online algorithms, dynamic MRI recon-
struction, Grassmannian optimization, robust PCA, low-rank
plus sparse.

1. INTRODUCTION

Low-rank models have been used extensively for recon-
structing undersampled dynamic magnetic resonance imag-
ing (DMRI) datasets [7, 9]. In these models, each vectorized
temporal image frame is treated as a column of an approx-
imately low-rank space-time matrix, where the low-rank
property arises due to spatio-temporal correlations. These
models have been extended by a variety of works to include
additional priors on the low-rank factors, e.g., the sparse and
low-rank model of [10]. Recently, Otazo et al. [16] applied
a low-rank plus sparse (L+S) model to DMRI reconstruc-
tion using a robust principal component analysis (RPCA)
approach [2]. Different from traditional RPCA [2], in [16]
the sparse component is modeled as transform sparse.

However, fitting a single low-rank or low-rank plus sparse
model to a global DMRI dataset has several limitations. First,
for large datasets, iterative reconstruction of the entire time
series can be time consuming or even impossible due to exces-
sive memory demand. Furthermore, a global low-rank model
cannot efficiently accommodate changes that may occur in
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the low-rank components over time, e.g., because of patient
motion, physiological noise, or field inhomogeneities.

An online reconstruction method, i.e., one reconstructs
the data in a sequential or streaming fashion, has the poten-
tial to overcome these limitations. Rather than reconstructing
the entire dataset at once, an online method reconstructs the
data frame-by-frame, or in sequential batches of frames, so
that only a fraction of the dataset needs to be stored in work-
ing memory at any given time. This can yield substantial re-
ductions in computational and memory demand. An online
approach also has benefits over independently reconstructing
batches of the data, since implicitly an online approach main-
tains a model for the data (e.g., a low-dimensional subspace),
which allows it to share information from previous frames.

This paper adapts the Grassmannian rank one update
subspace estimation (GROUSE) algorithm [1], originally
proposed for online subspace tracking, to the problem of
DMRI reconstruction. Our main contribution is a novel ex-
tension of GROUSE that incorporates batch processing of
several frames under a low-rank plus transform sparse model.
In particular, using tools from [6] we generalize the GROUSE
subspace update step to batch sizes greater than one. The re-
sulting framework gives a flexible, online, memory-efficient
method for reconstructing compressively sampled DMRI
datasets. Our experiments on real and simulated DMRI
datasets demonstrate that the proposed online approach gives
comparable results to state-of-the-art algorithms that fit a
global low-rank plus sparse model.

A previous work [8] proposed a modification of GROUSE
for robust subspace estimation with applications to foreground-
background separation in compressed surveillance video
streams. However, directly adapting the algorithm [8] to
a DMRI compressed sensing setting is computationally pro-
hibitive, since it requires solving a sequence of large-scale
sparsity regularized inverse problems at each iteration. Fur-
thermore, the algorithm in [8], which processes the data one
frame at a time, is unable to model transform sparsity along
the temporal dimension.

Several works have also investigated online reconstruc-
tion approaches for DMRI reconstruction. This includes
approaches based on Kalman filtering combined with com-
pressed sensing [12, 18], auto-regessive modeling combined
with compressed sensing [11], sparisty under spatial and tem-
poral finite differences [4,5,13], dictionary learning [15], and
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deep learning [14]. The present work differs from these in
that it is based on a robust subspace tracking approach.

2. PROBLEM FORMULATION

2.1. Signal model

We model the DMRI time-series to be reconstructed X =
[x1 · · · xT ] as being the sum of a component belonging to
a r-dimensional subspace S and a (transform) sparse residual
component:

xt = Uwt + st, for all t = 1, ..., T. (1)

Here U ∈ Cn×r is a matrix representative of the sub-
space S, i.e., a matrix having orthonormal columns such
that span(U) = S, wt ∈ Cr is a vector of weights at frame t,
and st ∈ Cn represents a sparse residual at frame t.

We also assume at each frame we receive mt < n com-
pressive measurements bt ∈ Cmt of the form

bt = Atxt + nt, for all t = 1, ..., T, (2)

where At : Cn → Cmt , is a time-dependent linear mea-
surement operator and nt is a vector of additive noise, which
we assume to be i.i.d. complex mean-zero white Gaussian of
uniform variance across all time frames. In this work, we
focus on the SENSE parallel MRI setting [17] where At =
[AT

t,1, ...,A
T
t,C ]T is the block column matrix whose ith block

At,i is given by At,i = PΩt
FDi, for all i = 1, ..., C,where

Di ∈ Cn×n is a diagonal matrix representing multiplication
by the known spatial sensitivity profile of the ith receive coil,
F is a 2-D DFT matrix, and PΩt is projection onto the frame-
dependent index set Ωt and C is the number of coils.

2.2. Batch model for online reconstruction

One possible online reconstruction approach would be to re-
cover the model (1) from the compressive measurements (2)
by processing one frame at a time, as in [8]. However, in
a DMRI context, the sparse component st is better modeled
as transform sparse [16], where the transform occurs in the
temporal dimension (e.g., temporal finite differences).

To incorporate temporal transform sparsity into a robust
online subspace tracking approach, we instead process a
batch of measurements Bj = [bt]t∈Ij coming from tempo-
rally adjacent image frames Xj = [xt]t∈Ij , where Ij is the
index set corresponding to the jth batch, with |Ij | = Tj . In
particular, we model the jth batch of frames Xj as

Xj = UWj + Sj ∈ Cn×Tj , for all j = 1, ..., B, (3)

where Wj ∈ Cr×Tj is a matrix of subspace weights for each
frame in the batch, and we assume the component Sj =
[st]t∈Ij is transform sparse, i.e., T (Sj) is sparse, where T
is some linear operator. This model can be viewed as a local

version of the low-rank plus sparse model investigated in [16].
In this work we focus on the case where T is a finite differ-
encing in the temporal dimension over a batch of frames, i.e.,
T (Sj) is a concatenation of the vectors st− st+1 for all con-
secutive indices t, t+ 1 ∈ Ij .

3. ALGORITHM

We adapt the online Grassmannian approach of [1, 20] to
perform DMRI reconstruction with the batch low-rank plus
transform sparse model (3). Our approach is motivated by the
following global optimization problem:

min
U

B∑
j=1

min
Sj ,Wj

∑
t∈Ij

‖At(Uwt + st)− bt‖22 + λ‖T (Sj)‖1

s.t. span(U) ∈ G(n, r). (4)

Here G(n, r) denotes the Grassmannian, the space of all r-
dimensional subspaces in Cn. Rather than computing a global
solution to (3), we attempt to find an approximate solution
to (3) in an online fashion by processing only one batch of
frames at a time. In particular, the algorithm alternates be-
tween solving for the optimal subspace weights and sparse
component for a single batch assuming U is fixed, and updat-
ing an estimate of the low-rank subspace representative U via
gradient descent on the Grassmannian. Algorithm 1 summa-
rizes the proposed approach, which we call Robust Upwards
of one Frame Fed GROUSE (RUFFed GROUSE).

3.1. Estimation of weights and sparse component

With U fixed, the cost function (3) is separable in each batch.
For notational simplicity in this section we drop the batch in-
dex subscript j. Let I be the index set of the current batch,
with |I| = T . Restricting the optimization (3) to the current
batch, yields the convex optimization problem

min
S,W

∑
t∈I
‖At(Uwt + st)− bt‖22 + λ‖T (S)‖1. (5)

The minimum of (5) over W = [wt]t∈I is separable in each
wt, and has the exact solution

wt = Q+
t (bt −Atst), for all t ∈ I, (6)

where Qt = AtU and (·)+ denotes the Moore-Penrose pseu-
doinverse. Substituting (6) into (5) gives the simplified opti-
mization problem

min
S

∑
t∈I
‖Pt(Atst − bt)‖22 + λ‖T (S)‖1, (7)

where Pt = (I − QtQ
+
t ). Note (7) is a convex sparsity-

regularized linear least-squares problem that one can solve ef-
ficiently with a variable splitting technique; we use the mod-
ified Arrow-Hurwicz primal-dual algorithm of [3]. Finally,
after computing the sparse residuals S = [st]t∈I , the optimal
weights W = [wt]t∈I are obtained directly from (6).
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3.2. Descent on the Grassmannian

Similar to [1], we propose updating the subspace estimate by
computing a gradient step along the Grassmannian G(n, r) of
the following subspace cost:

F (U ; j) =
∑
t∈Ij

‖AtUwt − vt‖22, (8)

where U ∈ Cn×r satisfying UHU = I is a representative of
the subspace S ∈ G(n, r), and where have set vt = bt−Atst
for all t ∈ Ij . Define Rj = [rt]t∈Ij = [AH

t (AtUwt −
vt)]t∈Ij . Taking derivatives of (8) with respect to the compo-
nents of U (the complex conjugate of U ) we get

dF

dU
= −

∑
t∈Ij

rtw
H
t = −RjW

H
j .

The gradient on the Grassmanian is given as1 G

G = (I −UUH)
dF

dU
= −RjW

H
j ,

where the last equality follows since each residual rt is in the
orthogonal complement of U . Set H = −G, the negative
gradient, and let H = ŨΣV H be the thin SVD of H where
Ũ ∈ Cn×r, Σ ∈ Cr×r, and V ∈ Cr×r. If Uj denotes
the current subspace estimate, a step along a geodesic of the
Grassmannian manifold in the direction of negative gradient
with step-size η is given by

Uj+1 = UjV cos(ηΣ)V H + Ũ sin(ηΣ)V H (9)

(see Eqn. 2.65 in [6]). Here cos(·) and sin(·) denote the ma-
trix cosine and sine respectively. The subspace update (9)
generalizes the update derived in [1]: for a batch size of one,
(9) reduces to the rank one update of [1]. In general, the up-
date (9) is low-rank, with rank at most the size of the batch.

3.3. Initialization strategies

The performance of RUFFed GROUSE will depend heavily
on the quality of the initialization of the subspace estimate
U0. When calibration data is present, i.e., k-space data is col-
lected at common low-pass locations in each frame, we can
perform an SVD on an initial low-resolution reconstruction of
the frames to obtain an estimate of U0. To further refine this
initialization, we propose passing over the frames in a ran-
domized order using the GROUSE algorithm, which returns
an estimate of the subspace U0. Using a randomized order
ensures the subspace estimate will not be biased towards cer-
tain temporal regions of the dataset. While this initialization
procedure requires a full pass over data, the GROUSE algo-
rithm is very efficient, and for the data sizes investigated in
this work, the GROUSE initialization took only a few sec-
onds.

1For derivation of this formula and other involving differential properties
of the Grassmannian manifold, see [6].

Algorithm 1 RUFFed GROUSE

Input: An n×r matrix U0 representing an initial estimate of
the low-rank subspace; sequence of compressive measure-
ments bt, subspace update step-size η.

Output: Subspace representative Uj , weights Wj , and
sparse residuals Sj at the j-th batch.
for batch j = 1, 2, . . . , B do

Compute subspace projectors

Qt = AtUj , Pt = I −Q+
t Qt for all t ∈ Ij

Compute sparse residuals via iterative solver:

Sj = arg min
S=[st]t∈Ij

∑
t∈Ij

‖Pt(Atst − bt)‖22 + λ‖T (S)‖1.

Compute subspace weights:

Wj = [wt]t∈Ij = [Q+
t (bt −Atst)]t∈Ij

Update subspace via gradient step on Grassmannian:

Rj = [AH
t (Atst + Qtwt − bt)]t∈Ij

(Ũ ,Σ,V ) = svd(RjW
H
j ) (thin SVD)

Uj+1 = UjV cos(ηΣ)V H + Ũ sin(ηΣ)V H .

end for

3.4. Memory complexity

Supposing we obtain m measurements on average per frame
having n voxels, then with uniform batch size T and subspace
rank r the RUFFed GROUSE algorithm requires storing vari-
able U ∈ Cn×r, Sj ∈ Cn×T , and T variables of size Cm×r

corresponding to the Qt. This yields an overall memory com-
plexity of O(mrT + n(r + T )). In contrast, for an acquisi-
tion consisting of F frames, a global L+S method requires
storing all m× F measurements and one variable having the
size of the full dataset Cn×F , which has complexity at least
O((m + n)F ). When F � max(r + T, rT ) this shows the
memory savings offered by RUFFed GROUSE algorithm are
substantial over a global L+S method.

4. RESULTS

Fig. 1 shows the results of DMRI recovery experiments per-
formed on two datasets: (1) a synthetic dataset generated
using the MRXCAT phantom [19] that simulates a breath-
held cardiac cine DMRI acquisition (409 × 409 pixels, 4
coils, and 24 temporal frames), and (2) a gated multicoil
Cartesian-sampled cardiac perfusion DMRI dataset used in
prior work [16] (128 × 128 pixels, 12 coils, and 40 temporal
frames). We retrospectively undersample each dataset in k-t
space at an acceleration factor of 8 using a variable-density
random Cartesian lines undersampling pattern changing with
each time frame. As an error metric, we use the signal to noise
ratio (SNR) defined as −20 log10(‖x− xref‖2/‖x‖2), where
xref is a reference reconstruction computed from the fully
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Fig. 1: Comparison of global L+S [16] reconstruction versus online algorithms RUFFed GROUSE (this work) and GROUSE [20] on a
synthetic cardiac cine DMRI dataset (left) and a real cardiac perfusion DMRI dataset (right). Images are cropped to a region of interest (ROI).

sampled data. We compute the SNR of the reconstruction
restricted to pixels in a region of interest (ROI) containing the
myocardium, which we call the SNR in ROI.

For RUFFed GROUSE we partitioned the dataset into
batches of b temporally adjacent frames and processed the
batches in sequence using the following settings: MRXCAT
dataset, r = 1, b = 6, η = 0.0002, λ = 0.005; perfusion
dataset r = 3, b = 5, η = 0.001, λ = 0.005. We initialize the
subspace estimate U0 using GROUSE [20]. We also compare
with the GROUSE run frame-by-frame in sequence, using
the same rank r and initialization of U0 (i.e., two full passes
of GROUSE). Finally, we compare with the low-rank plus
sparse (L+S) method of [16] with temporal finite differences
as the sparsifying transform, using publicly available code2.
All experiments were run in MATLAB on a MacBook Pro
laptop (3.1 GHz Intel Core i7 CPU, 16 GB RAM).

The reconstructions obtained using RUFFed GROUSE
are comparable to the L+S method, both visually and in terms
of SNR in ROI. The GROUSE reconstruction, which uses
only a low-rank model, gives lower quality reconstructions

2http://cai2r.net/resources/software/
ls-reconstruction-matlab-code

in frames containing significant dynamics (e.g., frame 15 for
the MRXCAT phantom dataset, and frame 8 for the perfu-
sion dataset). This demonstrates the benefit of including the
(transform) sparse component in RUFFed GROUSE. How-
ever, the improvement in reconstruction quality comes at the
expense of greater computation time: RUFFed GROUSE is
several times slower than GROUSE (e.g., 246 s vs. 18 s on
the synthetic dataset), yet still 2-4 times faster than the L+S
reconstruction on these datasets.

5. CONCLUSION

We extend the GROUSE subspace tracking algorithm to in-
corporate batch processing under a low-rank plus transform
sparse model with applications to DMRI reconstruction. We
show that the proposed approach gives comparable recon-
struction quality to the approach of [16] based on a global
low-rank plus sparse model that performs iterative reconstruc-
tion of the entire time series. The proposed approach requires
storing and processing only small batches of frames sequen-
tially, which allows robust subspace methods to be applied to
much larger DMRI datasets than previously possible.
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