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Reducing bias in Y-90 PET images by enforcing
non-negativity in projection space

Hongki Lim, Yuni K. Dewaraja, Member, IEEE, and Jeffrey A. Fessler, Fellow, IEEE

Abstract—Most existing PET image reconstruction methods
impose a nonnegativity constraint in the image domain that
is natural physically, but can lead to biased reconstructions.
This bias is particularly problematic for Y-90 PET because
of the low probability positron production and high random
coincidence fraction. We propose a new PET reconstruction
formulation that enforces nonnegativity of the projections instead
of the voxel values. This formulation allows some negative voxel
values thereby potentially reducing bias. To relax the non-
negativity constraint embedded in the standard methods for
PET reconstruction, we used an Alternating Direction Method
of Multipliers (ADMM). Because choice of ADMM parameters
can greatly influence convergence rate, we applied an automatic
parameter selection method to improve the convergence speed.
We investigated several variants differentiated by the base
model and the constraint condition using lung to liver slices of
XCAT phantom. We simulated low true coincidence count-rates
with high random fractions corresponding to the typical values
from patient imaging in Y-90 microsphere radioembolization.
We compared our new methods with standard reconstruction
algorithms. As the proposed algorithm iterates, the new method
reduces the bias in cold spot while yielding lower noise than the
standard method. The new model improves the quantification in
all regions of interest when the methods achieve similar level of
noise in the liver. The improvements with the new method are
especially notable when simulating conditions corresponding to
patients with lower activity administration (i.e., higher random
fractions).

I. INTRODUCTION

Y-90 PET is complex because of the low probability
positron production in the presence of increased singles events
from bremsstrahlung photons and gammas from natural ra-
dioactivity in Lu-based crystals. Due to these attributes of Y-
90, positive bias in cold regions and underestimation in regions
of interest are reported in several Y-90 PET studies such as [2].
In this paper, we propose a method to relax the conventional
image-domain nonnegativity constraint by instead imposing
a nonnegativity constraint on the predicted sinogram means.
To perform reconstruction that enforces this constraint, we
adopt ADMM and derived several different models based on
ADMM framework. The following subsection briefly reviews
the typical problem formulation in emission tomography.
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A. Emission Tomography

The goal in emission tomography is to find an emission
distribution x = (x1, ..., xnp

) [counts] from a realization
y = (y1, ..., ynd

) [counts] of the projection measurement
vector Y = (Y1, ..., Ynd

), where np is the number of voxels
of unknown functional image and nd is the number of rays.
Emission measurement Y follows Poisson statistical model as
follows:

Yi ∼ Poisson{ȳi(xtrue)}, i = 1, ..., nd, (1)

where xtrue is true unknown value that we want to estimate
and ȳi(x) [counts] is the measurement mean:

ȳi(x) = E[Yi] =

np∑
j=1

aijxj + r̄i = [Ax]i + r̄i. (2)

The matrix A denotes the system model and r̄i is the mean
background events such as scatter and random coincidence for
the ith ray. The maximum likelihood (ML) estimate x̂ of xtrue
minimizes the Poisson negative log-likelihood f(x) between
measurement and estimated measurement means:

f(x)
c
=

nd∑
i=1

ȳi(x)− yi log ȳi(x). (3)

Here, c
= indicates that we exclude constants independent of

x. The following formulation summarizes the conventional
emission tomography problem:

x̂ = argmin
x

f(x) (4)

subject to x ≥ 0. (5)

The typical approach for solving this formulation is to find a
surrogate function Q(x) of the log-likelihood that is easier to
monotonically decrease than f(x).

II. PROPOSED FORMULATION

To loosen the nonnegativity constraint in hope of reducing
the positive bias, we propose to allow negative values in
image domain while keeping positivity in projection space.
We propose the following formulation:

x̂ = argmin
x

f(x), subject to Ax+ r̄ > 0. (6)

The constraint Ax + r̄ > 0 is reasonable because likelihood
function f(x) includes log(Ax + r̄) and the argument of
a logarithm should be positive. We rewrite this optimization
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problem in the following unconstrained composite formula-
tion:

x̂ = argmin
x∈R

np

f(x) + g(Ax+ r̄), where g(v) =

{
∞, any vi < 0

0, all vi ≥ 0

(7)

for a vector argument v ∈ R
nd . To perform this minimization,

we introduce an auxiliary variable z leading to the following
equality constrained optimization problem:

x̂ = argmin
x∈R

np

min
z∈R

nd
f(x) + g(z), subject to Ax+ r̄ − z = 0.

(8)

We form an augmented Lagrangian based on above problem
formulation:

Ψ(x, z,λ) = f(x) + g(z) + λT (Ax+ r̄ − z) +
ρ

2
||Ax+ r̄ − z||22,

(9)

where λ is a dual variable and ρ > 0 is called the penalty
parameter. Letting d = Ax + r̄ − z,u = λ

ρ , we rewrite the
augmented Lagrangian as the following equivalent expression:

Ψ(x, z,u) = f(x) + g(z) +
ρ

2
||Ax+ r̄ − z + u||22 −

ρ

2
||u||22,
(10)

and finding the saddle point of (10) is equivalent to solving
the problem (8):

x̂ = argmin
x∈R

np

min
z∈R

nd
max
u∈R

nd
Ψ(x, z,u). (11)

ADMM [1] approaches the saddle point of the augmented
Lagrangian function by updating variables x, z,u in the
following sequential way:

x(n+1) = argmin
x

(
f(x) +

ρ

2
||Ax+ r̄ − z(n) + u(n)||22

)
(12)

z(n+1) = argmin
z

(
g(z) +

ρ

2
||Ax(n+1) + r̄ − z + u(n)||22

)
(13)

u(n+1) = u(n) + (Ax(n+1) + r̄ − z(n+1)). (14)

We initialize z(0) and u(0) as Ax(0) + r̄ and 0 respectively
in the implementation. ADMM is an extension of the method
of multipliers algorithm where (12), (13) can be viewed as a
finding primal optimal points in a sequential fashion and (14)
as finding a dual optimal point. Manually selecting parameter
ρ of ADMM algorithm often leads to slow convergence. [8]
proposed to adaptively tune the parameter to achieve faster
convergence. We adopted this adaptive ADMM method in the
implementation and investigated its efficacy.

III. VARIABLE UPDATES

The z-update (13) is obvious because function g(z) goes
to infinity when it has negative value:

z(n+1) = [Ax(n+1) + r̄ + u(n)]+, (15)

where [.]+ enforces the nonnegativity. However, the x-update
(12) is nontrivial as there is no analytical solution. We ap-
proach this problem by iteratively updating x to minimize
(descend) Ψ(x, z(n),u(n)). We rewrite the problem formula-
tion as following:

x(n+1) = argmin
x

(
f(x) +

ρ

2
||Ax+ r̄ − z(n) + u(n)||22

)

= argmin
x

(
f(x) + h(x)

)
. (16)

Because h(x) is quadratic, it is straightforward to derive a
separable quadratic surrogate function Qh,j for it [3]. Then,
to update x we combine that surrogate with the separable
surrogate function of f(x).

A. EM-based x update

With EM-based surrogate for f(x) [6], we find xj minimiz-
ing QEM,j +Qh,j by equating ∂(QEM,j(xj ;x

(n))+Qh,j(xj ;x
(n)))

∂xj

to zero. Zeroing the derivative and finding the root is as
follows:

x
(n+1)
j = root(α, β, ν), (17)

where

α = ρ

nd∑
i=1

aiaij (18)

β =
1

2

(
ρ

nd∑
i=1

aij([Ax(n)]i + r̄i − z
(n)
i + u

(n)
i ) + aj (19)

+ ρ

nd∑
i=1

aiaij(γj − x
(n)
j )

)
(20)

ν = e
(n)
j x

(n)
j − γj

(
ρ

nd∑
i=1

aij([Ax(n)]i + r̄i − z
(n)
i + u

(n)
i ) (21)

+ aj − ρ

nd∑
i=1

aiaijx
(n)
j − e

(n)
j

)
. (22)

The user-defined γj values can provide faster convergence [5]
and one way to specify γj values is as follows:

γj = min
r̄i
ai
. (23)

ȳ
(n)
i is equivalent to ȳi(x

(n)). e(n)j denotes
∑nd

i=1 aij
yi

ȳ
(n)
i

and

aj is
∑nd

i=1 aij . root(α, β, ν) returns the root of 0 = αx2 +
2βx− ν for α > 0. Using the numerically stable form:

root(α, β, ν) =

⎧⎪⎪⎨
⎪⎪⎩

√
β2+αν−β

α , α > 0, β < 0
ν
2β , α = 0

ν√
β2+αν+β

, α > 0, β ≥ 0.

(24)

B. SPS-based x update
With SPS-based surrogate for f(x) [4], we update x using

the Newton’s method without any nonnegativity constraint:

x
(n+1)
j = x

(n)
j −

∂QSPS,j(xj ;x
(n))

∂xj
|
xj=x

(n)
j

+
∂Qh,j(xj ;x

(n))

∂xj
|
xj=x

(n)
j

∂2QSPS,j(xj ;x
(n))

∂x2
j

+
∂2Qh,j(xj ;x

(n))

∂x2
j

(25)

= x
(n)
j −

∑nd
i=1(1 − yi

ȳ
(n)
i

)aij + ρ
∑nd

i=1 aij([Ax(n)]i + r̄i − z
(n)
i + u

(n)
i )

∑nd
i=1 c̆

(n)
i aijai + ρ

∑nd
i=1 aijai

.

(26)

c̆
(n)
i denotes the optimal curvature [4]. Because optimal cur-

vature c̆
(n)
i is defined only for [Ax]i ≥ 0, we use the curvature

from Taylor expansion for the ith bin when −r̄i < [Ax]i < 0.
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Fig. 1. True image and the corresponding projection: (a),(c) and (b),(d)
are slices of true image and projection views at one angle simulating the
conditions of patient A and B data respectively. Activity concentration ratio
between healthy liver and hot spot (lesion) is 1:5 to simulate the typical uptake
ratio.

IV. EXPERIMENTAL METHOD

A. Simulation

1) True image: We simulated extremely low-count scans,
typical for Y-90 PET following radioembolization, with the
extended cardiac-torso (XCAT) (Fig. 1). We set the image size
to 128 × 128 × 100 with a voxel size 4.0 × 4.0 × 4.0 (mm3)
and chose 100 slices ranging from lung to liver. The activity
concentration ratio between healthy liver and a 42mL lesion
was 1:5 to simulate a typical uptake ratio. We also placed a
42mL zero valued cold spot in the liver. In one case activity
was assigned to the entire liver, while in the other case only to
part of the liver as lobar or segmental treatment is common.
Activity assigned to the lungs simulated a lung shunt of 5%.
The rest of the phantom is ‘cold’.

2) Projection: Our experiment uses the framework of
Michigan Image Reconstruction Toolbox (MIRT)1. We set
the projection size to 128 × 100 with 168 projection angles
and the detector width to 8mm when specifying the system
model. For realistic simulation, we replicate the true and
random counts observed in the patient imaging following
radioembolization. Table I shows the low count conditions that
we simulated corresponding to a relatively high Y-90 adminis-
tration (Patient A) and a relatively low administration (Patient
B) for patients treated at our clinic with glass microspheres.
We use smaller area of liver (Fig. 1(b)) in the Patient B case
because lower Y-90 administration and consequent lower true
counts are usually induced by treatment of smaller region in
the liver. Simulated projections are shown in Fig 1(c) and (d).

B. Evaluation metrics
We eroded each volume of interest (VOI) by 2 pixels to

exclude resolution effects from the evaluation. We evaluated
1http://web.eecs.umich.edu/∼fessler/code/index.html

TABLE I
ADMINISTERED ACTIVITY AND RANDOMS FRACTIONS FOR TWO PATIENTS

TREATED AT OUR CLINIC WITH Y-90 RADIOEMBOLIZATION.

Patient A Patient B
Y-90 Injection(GBq) 3.9 0.9

True counts 675,498 96,890
Random counts 3,275,353 1,692,504

Total counts 3,950,851 1,789,394
Random Fraction∗ (%) 83 95

*Random Fraction = (True counts / Total counts)× 100

liver quantification by calculating activity recovery:

Activity recovery in liver (%) =
Estimated mean counts

True mean counts
× 100 % (27)

=

1
MJLiver

∑M
m=1

∑
j∈Liver x̂m[j]

1
JLiver

∑
j∈Liver xtrue[j]

× 100 %, (28)

where M is the number of realizations and JLiver is the
number of voxels in the volume of liver. Estimated mean
counts is calculated from the multiple realizations. We used
10 realizations in our experiment (M = 10). x̂m[j] indicates
the jth voxel value at mth realization and xtrue[j] denotes the
jth voxel value of true counts.

Quantification in hot and cold spot (where true value of
voxel is zero) are evaluated based on contrast recovery 2:

Contrast recovery in hot spot (%) =
Ci/CBKG − 1

R− 1
× 100 % (29)

=

1
MJHotspot

∑M
m=1

∑
j∈Hotspot x̂m[j]

1
JLiver

∑
j∈Liver xtrue[j]

− 1

1
JHotspot

∑
j∈Hotspot xtrue[j]

1
JLiver

∑
j∈Liver xtrue[j]

− 1

× 100 % (30)

Contrast recovery in cold spot (%) = (1− Ci

CBKG
)× 100 % (31)

=

(
1−

1
MJColdspot

∑M
m=1

∑
j∈Coldspot x̂m[j]

1
JLiver

∑
j∈Liver xtrue[j]

)
× 100 %. (32)

Ci is the mean counts for object i and CBKG is mean
background (eroded liver) counts. R is the true lesion-to-
normal liver activity concentration ratio. We also study the
counts bias the in field of view (FOV):

FOV bias (%) =
(Total estimated counts − Total true counts)

Total true counts
× 100 %

(33)

=
( 1
M

∑M
m=1

∑np

j=1 x̂m[j]−∑np

j=1 xtrue[j])∑np

j=1 xtrue[j]
× 100 %.

(34)

Lastly, we calculate the image ensemble noise across realiza-
tions averaged over the liver to evaluate the variability across
realizations:

Image ensemble noise (%) (35)

=

√
1

JLiver

∑
j∈Liver

(
1

M−1

∑M
m=1(x̂m[j]− 1

M

∑M
m′=1 x̂m′ [j])2

)
1

JLiver

∑
j∈Liver xtrue[j]

× 100 %,

(36)

2http://www.nema.org/Standards/Pages/Performance-Measurements-of-
Positron-Emission-Tomographs.aspx
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Fig. 2. Results from simulating Patient B conditions. Proposed algorithms
(magenta, green) give higher contrast and better activity recovery compared
to standard algorithms (EM, SPS).

TABLE II
EVALUATION METRICS COMPARISON WHEN ACHIEVING EQUIVALENT

NOISE IN ERODED LIVER.

Condition Algorithm Iteration ARL CRH CRC FOVB IEN

Patient A

EM 8 91.0 94.5 75.8 12.3 39.1
SPS 50 91.7 94.3 81.6 14.5 38.7

A-ADMM-EM 9 92.3 94.5 76.1 2.6 38.6
A-ADMM-SPS 50 94.1 94.6 83.8 -7.5 38.7

Patient B

EM 10 85.8 93.4 75.2 58.8 63.9
SPS 50 85.2 93.2 79.1 73.4 63.2

A-ADMM-EM 10 88.1 93.9 75.2 15.2 63.7
A-ADMM-SPS 45 91.3 94.4 82.9 -41.6 63.2

∗ARL: Activity Recovery in Liver, CRH: Contrast Recovery in Hot spot
CRC: Contrast Recovery in Cold spot, FOVB: FOV Bias
IEN: Image Ensemble Noise, A-ADMM: Adaptive-ADMM

V. RESULTS

We compared the proposed methods (Adaptive-ADMM-
EM, Adaptive-ADMM-SPS) to the standard EM and SPS al-
gorithms (1 subset). We use two iterations of OSEM algorithm
with 12 subsets to initialize x for all algorithms because these
are typical reconstruction parameters used for Y-90 in the
clinic and we want to see how much each method can improve
the quantification compared to the initial point.

Fig. 2 shows the results with plots showing how noise versus
activity/contrast recovery in VOIs evolve with iterations. Fig. 2
also includes a plot of FOV bias versus iterations. Proposed
algorithms achieve higher activity recovery in liver and con-
trast recovery in hot/cold spot compared to each base method
(EM, SPS) when the noise in liver is similar to each other.

Table II summarizes the evaluation results at the iteration
point when each method gives similar noise in liver. Proposed
methods improve all the metrics compared to the standard
methods. Improvement is notable in the Patient B case. In this
lower activity administration case, when compared to standard
SPS, A-ADMM-SPS improves activity recovery in liver by
6.1% and contrast recovery in hot spot and cold spot by 1.2%
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Fig. 3. Reconstructed images using EM, SPS and proposed algorithms (A-
ADMM-EM, A-ADMM-SPS). Iteration number is chosen when each method
achieve similar level of noise in liver. True image corresponds to Fig. 1(b).

and 3.8% respectively. A-ADMM-EM improves FOV bias by
43.6 % compared to standard EM. Fig. 3 visually compares the
reconstructed images when each method achieves equivalent
noise.

VI. CONCLUSION

This paper has presented a new PET reconstruction formula-
tion with a relaxed nonnegativity constraint. The experimental
results show that the proposed method reduces the bias in
VOI when the true coincidence count-rate is low. Our proposed
method is not limited to Y-90 PET but has application in other
imaging situations with low true count rates and high random
fractions such as the ion beam therapy [7].
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