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ABSTRACT

We study accelerated dual gradient-based methods for im-

age denoising/deblurring problems based on the total varia-

tion (TV) model. For the TV-based denoising problem, com-

bining the dual approach and Nesterov’s fast gradient pro-

jection (FGP) method has been found effective. The corre-

sponding denoising method minimizes the dual function with

FGP’s optimal rate O(1/k2) where k denotes the number of

iterations, and guarantees a rate O(1/k) for the primal func-

tion decrease. Considering that the dual projected gradient

decrease is closely related to the primal function decrease,

this paper proposes new accelerated gradient projection meth-

ods that decrease the projected gradient norm with a fast rate

O(1/k1.5) and that are as efficient as FGP. The proposed ap-

proach also decreases the primal function with a faster rate

O(1/k1.5). We provide preliminary results on image denois-

ing/deblurring problems with a TV regularizer, where the fast

and efficient denoising solver is iteratively used for solving

a deblurring problem as the inner proximal update of a fast

iterative shrinkage/thresholding algorithm (FISTA).

Index Terms— Fast dual gradient-based methods, image

deblurring, image denoising, total variation.

1. INTRODUCTION

Image denoising and deblurring problems based on the to-

tal variation (TV) regularizer [1] have been successfully used

in various image processing applications, since TV removes

noise in a given image while preserving important edge infor-

mation. However, unlike image denoising/deblurring prob-

lems with a (separable) ℓ1-regularizer that have a simple it-

erative shrinkage/thresholding update [2], a TV regularizer is

more difficult to optimize due to its non-separability and non-

smoothness.

The dual formulation of a TV-regularized least-squares

denoising problem becomes a constrained smooth convex

separable problem, so using a gradient projection (GP)

method leads to a simple update in the dual domain [3].

In [4], that dual method is accelerated using Nesterov’s fast

gradient projection (FGP) method [5] that decreases the dual
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function with a fast rate O(1/k2) where k denotes the num-

ber of iterations, improving on the rate O(1/k) of GP. That

dual-based FGP provides a O(1/k) rate for the primal func-

tion decrease [6, 7] (and for the primal distance decrease [6]).

While one cannot improve the rate O(1/k2) of the dual func-

tion decrease [5], one can improve the O(1/k) rate of the

primal function decrease of dual gradient-based methods to

a faster O(1/k1.5) rate as discussed in [7]; this paper applies

the new fast dual gradient method of [7] to TV-based imaging

problems.

Inspired by [8], we showed in [7] that the dual projected

gradient decrease is directly related to the primal function

decrease. As a consequence, applying accelerated gradient

projection methods that decrease the projected gradient norm

with rate O(1/k1.5) in [9] to the dual problem decreases the

primal function with a fast rate O(1/k1.5) [7]. This paper

studies the convergence behavior of such dual-based meth-

ods for TV-based denoising problems. In addition, we em-

pirically extend the optimized gradient method (OGM) [10]

and OGM-OG (OG for optimized over gradient) in [11] to

the dual constrained problem. Although there is no known

convergence rate theorem for these methods for constrained

problems, both have the best known bounds for decreasing

the function and gradient of the unconstrained smooth convex

problem respectively [11].

In [4], a fast iterative shrinkage/thresholding algorithm

(FISTA) is used for solving a TV-regularized deblurring prob-

lem, which requires iteratively solving a denoising subprob-

lem. A fast and efficient dual-based FGP solves such denois-

ing subproblems in [4], and we propose to use our accelerated

denoising solvers with rate O(1/k1.5) to accelerate overall

convergence speed for solving the image deblurring problem.

We provide preliminary results on TV-based image denois-

ing/deblurring problems.

2. PROBLEM AND METHOD

2.1. Total variation regularization model

We consider a linear model b = Ax + ǫ, where b ∈ R
MN

is an observed (blurred and noisy) image, A ∈ R
MN×MN

is a blurring matrix, x = {xm,n} ∈ R
MN is a true image,
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and ǫ ∈ R
MN is an additive noise, where we assume the

(standard) reflexive boundary conditions. Here for simplicity,

we represent a 2D image with size M × N as a vector with

length MN .

To recover an image x from a known A and an observed

b, we consider solving the following least-squares problem

with a TV regularizer [1]:

min
x

{

Φ(x) :=
1

2
||Ax− b||22 + λ||x||TV

}

, (P0)

where an anisotropic TV semi-norm regularizer is defined as

||x||TV =

M−1
∑

m=1

N−1
∑

n=1

{|xm,n − xm+1,n|+ |xm,n − xm,n+1|}

+

M−1
∑

m=1

|xm,N − xm+1,N |+
N−1
∑

n=1

|xM,n − xM,n+1|.

Note that the analysis in this paper can be easily extended to

an isotropic TV regularizer.

2.2. FISTA for a deblurring problem (P0)

For a large-scale image, i.e., large M and N , in (P0), one

would prefer using first-order optimization algorithms that are

mildly dependent on the problem dimension [12]. One such

representative “algorithm” is a proximal gradient method that

has the following update:

xi = pL(xi−1) (1)

:= prox λ
L
||·||TV

(

xi−1 −
1

L
A⊤(Axi−1 − b)

)

,

where i denotes the number of iterations, and the Lipschitz

constant L is chosen to satisfy L ≥ ||A||22 to guarantee a

descent update, and the proximity operator is defined as

proxh(η) := argmin
x

{

h(x) +
1

2
||x− η||22

}

.

In addition, by adding only few additional operations as

shown next, its rate O(1/i) for the function decrease can be

improved to an optimal rate O(1/i2) [13]; the corresponding

“algorithm” named FISTA [13] is used for image deblurring

problem (P0) in [4].

Algorithm 1 FISTA for image deblurring (P0)

1: Input: x0 = η0, t0 = 1, L ≥ ||A||22.

2: for i ≥ 1 do

3: xi = pL(ηi−1)

4: ti =
1+

√
1+4t2

i−1

2

5: ηi = xi +
ti−1−1

ti
(xi − xi−1)

Even though each proximal gradient update (1) only in-

volves the operations A and A⊤ rather than an expensive in-

verse of A⊤A, the proximal mapping with the TV regular-

izer is difficult to tackle due to its non-separability and non-

smoothness. This computational burden can be circumvented

using dual approach in [3], which we review in Section 3.

By defining b̄ := ηi−1− 1
L
A⊤(Aηi−1−b) and λ̄ := λ

L
,

the proximal gradient update in line 3 of Alg. 1 (and similarly

in (1)) becomes the following TV-based denoising problem:

min
x

{

H(x) :=
1

2
||x− b̄||22 + λ̄||x||TV

}

. (P1)

The next section reviews fast and efficient dual gradient-based

methods (dual-based GP and FGP) in [3, 4] for solving “in-

ner” TV-based denoising problem (P1).

3. DUAL-BASED GP AND FGP FOR DENOISING

3.1. Dual approach for “inner” denoising problem (P1)

TV regularizer can be rewritten as ||x||TV = ||Dx||1 by

defining the differencing matrix Dx = z := {zvm,n, z
h
m,n} ∈

R
(M−1)N+M(N−1), where

zvm,n = xm,n − xm+1,n, m = 1, . . . ,M − 1, n = 1, . . . , N,

zhm,n = xm,n − xm,n+1, m = 1, . . . ,M, n = 1, . . . , N − 1.

Note that the adjoint to D is given by

[D⊤z]m,n = zvm,n − zvm−1,n + zhm,n − zhm,n−1.

Using the matrix D, solving (P1) is equivalent to solving

min
x,z

{

H̃(x, z) :=
1

2
||x− b̄||22 + λ̄||z||1 : Dx = z

}

,

(P1′)

which has the following (constrained smooth convex) dual

problem [6, 7]:

min
y

{q̃(y) := F (y) +G(y)} (D1)

with the corresponding primal variable x(y) of the dual vari-

able y defined as [6, 7]:

x(y) = D⊤y + b̄,

where F (y) =
1

2
||D⊤y + b̄||22 −

1

2
||b̄||22,

G(y) =

{

0, y ∈ Yλ̄ := {y : |yl| ≤ λ̄, ∀l},
∞, otherwise,

and the projection operator onto a set Yλ̄ is defined as

PYλ̄
(y) = min{|yl|, λ̄}sgn{yl}. Solving (D1) is equiva-

lent to maximizing the dual function q(y) := −q̃(y), and

later sections discuss convergence rates on the primal-dual

gap decrease H(x(y)) − q(y). Note that the convergence

rate of H(x(y)) − q(y) determines the convergence rate of

the primal function decrease H(x(y))−H(x∗), where x∗ is

a solution of (P1).
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3.2. Dual-based GP and FGP

The GP update for the dual (D1) is as follows [3, 4, 6, 7]:

yk = pqLq
(yk−1) := PYλ̄

(

yk−1 −
1

Lq

D(D⊤yk−1 + b̄)

)

for Lq ≥ ||D||22, which only involves simple operations,

where k denotes the number of “inner” iterations. This dual-

based GP is accelerated in [4] using Nesterov’s FGP [5] that

is an instance of FISTA [13], as shown below.

Algorithm 2 DualFGP (b̄, λ̄,K) for image denoising (P1)

1: Initialize: y0 = w0, t0 = 1, Lq ≥ ||D||22.

2: for 1 ≤ k ≤ K do

3: yk = pqLq
(wk−1)

4: tk =
1+

√
1+4t2

k−1

2

5: wk = yk + tk−1−1
tk

(yk − yk−1)

6: Output: x(yK)

This dual-based FGP (DualFGP) [4] decreases the dual

function with an optimal rate O(1/k2) that is faster than the

rate O(1/k) of dual-based GP [3]. However, the convergence

rate for the primal function decrease is not discussed in [3,

4]; the next two subsections and Section 4 adapt the analysis

in [7] to characterize the convergence rate of DualFGP and

the proposed methods.

3.3. Relation between the dual gradient norm and the

primal-dual gap

In [7, Lemma 4.4], the primal-dual gap decrease has the fol-

lowing bound, using the fact that the subgradient d ∈ ∂||z||1
is bounded as ||d||2 ≤

√

(M − 1)N +M(N − 1).

Theorem 1. For any y and a solution y∗ of (D1), the primal-

dual gap of (P1) has the following bound:

H(x(pqLq
(y)))− q(pqLq

(y)) ≤ 2Lq

(

||pqLq
(y)− y∗||2

+ ||y∗||2 +
√

(M − 1)N +M(N − 1)
)

||pqLq
(y)− y||2.

The iterates {yk} of both GP and FGP satisfy ||pqLq
(yk)−

y∗|| ≤ ||y0−y∗|| [7], so the term ||pqLq
(y)−y||2 becomes the

factor that affects the primal-dual gap decrease in Thm. 1. We

next discuss the primal convergence analysis of dual-based

GP and FGP based on Thm. 1.

3.4. Convergence rates of dual-based GP and FGP

We showed in [9] that both GP and FGP decrease the pro-

jected gradient norm with rate O(1/k), i.e.,

||pqLq
(yk)− yk||2 ≤ 2||y0 − y∗||2

k
. (2)

This means that the dual-based FGP guarantees a primal func-

tion rate of decrease that is no better than that of the dual-

based GP, which is curious in light of the empirical accel-

eration of dual-based FGP for the primal function decrease.

(In [6], the primal function rate for dual-based GP was im-

plied to be O(1/
√
k), unlike [7].) This practical accelera-

tion may be explained as follows. First, comparing the algo-

rithms based on worst-case bounds such as (2) (that are not

guaranteed to be tight) may not apply to the specific prob-

lem (D1). Second, we showed in [11] that Nesterov’s fast

gradient method (FGP for unconstrained problems) decreases

the gradient norm (that is the smallest among all iterates) with

rate O(1/k1.5), and this rate might hold for the convergence

behavior of DualFGP. Whether or not FGP decreases the pro-

jected gradient norm with rate O(1/k1.5) is an open question,

while the rate O(1/k) for GP cannot be improved [9].

3.5. FISTA with DualFGP for image deblurring

DualFGP
(

b̄(ηi−1), λ/L,K
)

was used in [4] as an approxi-

mation of pL(ηi−1) in Alg. 1, as described in Alg. 3 below,

where the approximation accuracy depends on the choice of

the total number of (inner) iterations K.

Algorithm 3 FISTA for (P0) with DualFGP for (P1)

1: Initialize: x0 = η0, t0 = 1, L ≥ ||A||22, K.

2: for i ≥ 1 do

3: xi = DualFGP
(

b̄(ηi−1), λ/L,K
)

4: ti =
1+

√
1+4t2

i−1

2

5: ηi = xi +
ti−1−1

ti
(xi − xi−1)

Due to the inexactness for finite K, there is no known con-

vergence rate bound for Alg. 3, but one could expect roughly

O(1/i2) as for Alg. 1 if K is “sufficiently large”. On the

other hand, a monotone version of FISTA (MFISTA) was pro-

posed in [4] to heuristically improve stability of Alg. 3 with

additional computation of the function value Φ(·) at each it-

eration. To further accelerate DualFGP (and thus FISTA with

DualFGP in Alg. 3), the next section considers algorithms that

decrease the primal-dual gap of (P1) with rate O(1/k1.5).

4. PROPOSED METHODS

4.1. Dual-based Generalized FGP

We consider applying the generalized FGP (GFGP) algo-

rithm in [9] to the dual problem (D1); these methods with

particular choices of tk decrease the primal-dual gap with

rate O(1/k1.5) based on Thm. 1. We call the proposed al-

gorithm the dual-based GFGP (DualGFGP) in this paper and

the outline is shown as Alg. 4 on the next page.

The iterates y ∈ {yk,wk} of DualGFGP satisfy ||pqLq
(y)−

y∗|| ≤ ||y0 − y∗|| and have the projected gradient bound [9]:

min
y∈{{wl}

k−1

l=0
,yk}

||pqLq
(y)− y||2 ≤ ||y0 − y∗||2

√

∑k−1
l=0 (Tl − t2l ) + Tk−1

.

(3)
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Algorithm 4 DualGFGP
(

b̄, λ̄,K
)

for image denoising (P1)

1: Initialize: y0 = w0, t0 = T0 = 1, Lq ≥ ||D||22.

2: for 1 ≤ k ≤ K do

3: yk = pqLq
(wk−1)

4: Choose tk s.t. tk > 0 and t2k ≤ Tk :=
∑k

i=0 ti.

5: wk = yk + (Tk−1−tk−1)tk
tk−1Tk

(yk − yk−1)

6: +
(t2k−1

−Tk−1)tk
tk−1Tk

(yk −wk−1)

7: Output: x(yK)

In [9], the dual-based GFGP with the following choice:

tk =

{

1+
√

1+4t2
k−1

2 , k = 1, . . . ,
⌊

K
2

⌋

− 1,
K−k+1

2 , otherwise,
(4)

minimizes the upper bound (3) and guarantees the best known

bounds with a rate O(1/k1.5) for the projected gradient norm

decrease, which we denote dual-based FGP-OPG (OPG for

optimized over projected gradient). While we use the FGP-

OPG as a representative of the GFGP in the result section,

when one does not want to select K in advance one could

consider using tk = k+a
a

for any a > 2 that also guarantees

a rate O(1/k1.5) [9]. (Note that DualGFGP reduces to Du-

alFGP when t2k = Tk.) Section 5 explores using DualGFGP

with O(1/k1.5) instead of DualFGP for acceleration.

4.2. Other accelerated dual gradient-based methods

For unconstrained smooth convex problems, OGM [10] and

OGM-OG [11] have the best known bounds for the function

and gradient norm decrease respectively. We empirically ex-

tend them for the constrained problem (D1), and denote their

projection versions as OGP and OGP-OG respectively. The

resulting dual-based OGP and OGP-OG simply replace the

wk update of DualGFGP by wk = yk +
(Tk−1−tk−1)tk

tk−1Tk
(yk −

yk−1) +
(2t2k−1

−Tk−1)tk
tk−1Tk

(yk −wk−1), where OGP uses tk in

line 4 of DualFGP and OGP-OG uses tk in (4).

5. RESULT

5.1. Denoising

We use the (normalized) 512 × 512 Lena image for the TV-

based denoising problem (P1). The noisy image b̄ is gen-

erated by adding noise that is normally distributed with zero

mean and standard deviation 0.1, and we use λ̄ = 0.1 in (P1).

Fig. 1 shows the convergence plot of the primal-dual gap de-

crease of GP, FGP, FGP-OPG, OGP and OGP-OG for solving

the dual (P1). Interestingly, FGP and OGP (OGM) that only

guarantees decreasing the (projected) gradient norm with rate

O(1/k) [9, 11] is faster than FGP-OPG and OGP-OG with a

rate O(1/k1.5) respectively. In addition, we see an empirical

acceleration using OGP and OGP-OG over FGP and FGP-

OPG (and thus GP). We made similar plots for other noise

realizations and λ̄ values and observed the same trends.

Iteration (k)
20 40 60 80 100

H
(x
(y

k
))
−
q
(y

k
)

10
1

10
2

10
3 GP

FGP (or Alg.2)

FGP-OPG (or Alg.4 w/ (4))

OGP

OGP-OG

Fig. 1. Image denoising: H(x(yk))− q(yk) vs. Iteration (k)

5.2. Deblurring

We use the same Lena image for the TV-based deblurring

problem (P0) where the operator A uses 19×19 Gaussian fil-

ter with standard deviation 4 and a normally distributed noise

ǫ has zero mean and standard deviation 0.001. We choose

λ = 0.005 in (P0). Fig. 2 shows the convergence plot of the

function decrease Φ(xi) of Alg. 3 using dual-based GP, FGP-

OPG, OGP and OGP-OG as well as dual-based FGP in [4] for

solving denoising subproblems with a fixed K = 10 (and a

warm-start). Since the accuracy of solving the subproblem af-

fects the overall convergence of Alg. 3, OGP behaves the best

among all algorithms as expected. Either using MFISTA or

increasing K will improve convergence of other algorithms.

Iteration (i)
0 10 20 30 40 50

Φ
(x

i)

18.6

18.8

19

19.2

19.4

19.6

19.8

20
Alg.3 w/ GP

Alg.3 w/ FGP

Alg.3 w/ FGP-OPG

Alg.3 w/ OGP

Alg.3 w/ OGP-OG

Fig. 2. Image deblurring: Φ(xi) vs. Iteration (i)

6. CONCLUSION

We analyzed the convergence rate of dual gradient-based

methods for TV-based image denoising/deblurring prob-

lems. In particular, we showed that the proposed dual ap-

proach guarantees decreasing the primal function with rate

O(1/k1.5) that is superior to the existing O(1/k) bound for

the dual-based GP and FGP. Although it was unexpected that

the proposed approach did not yield any practical acceleration

over dual-based FGP despite its improved theoretical bounds,

we found empirically that using dual-based OGP and OGP-

OG provides practical acceleration over the “conventional”

combination of FISTA with DualFGP.
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