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Abstract- Preconditioning methods can accelerate the conver-
gence rate of iterative algorithms. Classic iterative tomographic 

reconstruction algorithms are typically based on relatively simple 

diagonal preconditioners that ignore the spatial correlation be-

tween voxels thus providing only limited acceleration. Non-diag-

onal preconditioners have the potential to offer more substantial 

acceleration, but they are more complicated to design and imple-

ment for space-variant problems, especially in three dimensions 

(3D). This paper describes a new non-diagonal preconditioning 

method for space-variant reconstruction problems in x-ray com-

puted tomography (CT). The proposed preconditioner is based on 

an approximation of the local spectral response of the Hessian 

matrix that serves as an approximate Fourier-domain majorizer 

of the cost function. Based on a multi-channel formulation, the 

preconditioner consists of independent frequency bands to allow 

flexible adjustment of location-dependent responses. The precon-

ditioner also allows simple closed-form iterations that can be eas-

ily combined with other acceleration techniques such as ordered 

subsets, line search, conjugate gradient, and Nesterov’s optimal 

gradient methods. Its computational overhead is roughly a fast 

Fourier transform and its inverse per iteration. Applications to 

clinical CT data illustrate that the proposed method provides 

more substantial acceleration to space-variant 3D CT reconstruc-

tion than classic diagonal preconditioning. 

Index Terms— computed tomography, iterative image recon-

struction, preconditioner.  

I. INTRODUCTION 

Within the past decade, model-based iterative reconstruction 

(MBIR) [1] has become available on clinical x-ray computed 

tomography (CT) scanners. Based on the principles of maxi-

mum a posteriori (MAP) estimation, MBIR incorporates mod-

els of three-dimensional (3D) system optics, data noise statis-

tics, and image prior information via the optimization of a cost 

function [2]. Reduction of radiation dose of up to 80% relative 

to the classical filtered backprojection (FBP) reconstruction 

has been reported in several clinical studies [3]–[5]. 

Despite the improved image quality, the expensive computa-

tional cost of MBIR remains an impediment to its widespread 

use in clinical environments. It is well known that large-scale 

tomographic problems are ill-conditioned, thus conventional 

gradient-based iterations suffer from slow convergence rates. 

The computational cost of MBIR is also exacerbated by the 

complicated geometrical, physical, and statistical models in-

corporated in the cost function; and by the increasing size of 

data acquired by today’s high-resolution, wide-coverage and 

multi-energy CT scanners.  

Preconditioning methods can accelerate the convergence rate 

of iterative algorithms without altering their ultimate solutions. 

In a preconditioned MBIR algorithm, a transformation of var-

iables, called the preconditioner, is applied to reduce the con-

dition number of the Hessian matrix, i.e., the matrix of second-

order partial derivatives, of the MBIR cost function. Several 

widely-used reconstruction algorithms in emission and trans-

mission tomography can be viewed as diagonally precondi-

tioned gradient descent, e.g. SIRT [6][7][8][9], EM 

[10][11][12], ML-TR [13] [14], and SQS [15]. However, they 

are typically derived by separable surrogate functions that con-

sider only the largest eigenvalue of the Hessian matrix. With-

out considering the spectral characteristics of all eigenvalues, 

these classic diagonal preconditioners provide only limited ac-

celeration. 

To further accelerate convergence, it is appealing to develop 

non-diagonal preconditioners that incorporate the off-diagonal 

structure of the Hessian matrix, such as the 1/|��|  spectral 

characteristic of tomographic problems. The simplest form of 

non-diagonal preconditioning are “Fourier” preconditioners 

that assume the Hessian matrix is approximately a space-invar-

iant convolution operator and the preconditioner is the corre-

sponding deconvolution operator. Clinthorne presented an 

apodized ramp filter as a preconditioner in unweighted-least-

squares reconstruction and observed impressive acceleration 

[16]. Nuyts designed a similar frequency amplification filter to 

boost convergence of high spatial-frequency image features in 

Poisson maximum likelihood reconstruction [17]. Unlike Iter-

ative FBP algorithms [18][19] or its variants [20], the precon-

ditioning methods theoretically converge to the solution de-

fined by the original MBIR cost function. However, such Fou-

rier preconditioners in general are ineffective for highly space-

variant tomographic problems due to non-uniform statistical 

noise modeling and location-dependent regularization [21][22].  

To better address space-variant reconstruction, Booth and 

Fessler [21] suggested that the Hessian matrix in positron 

emission tomography (PET) problems can be locally approxi-

mated as a convolution operator and proposed a “combined 
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circulant-diagonal” preconditioner where a Fourier precondi-

tioner is modulated by a location-dependent scaling factor. 

This method yields substantially faster convergence speed than 

either the Fourier or diagonal preconditioning alone and has 

been later applied to 3D CT MBIR [23]. However, the degree 

of freedom of the preconditioner remains limited to account for 

space-variant regularization. In a subsequent work, Fessler and 

Booth [22] improved the preconditioner by location-dependent 

interpolation among multiple Fourier kernels to provide more 

flexibility in addressing location- and edge-dependent regular-

ization, although higher computational overhead is caused by 

multiple fast Fourier transforms (FFTs) per iteration. This 

multi-FFT method has shown promising behavior for non-

quadratically regularized MBIR in 2D PET, but to our 

knowledge, has not been applied to MBIR in 3D CT, where it 

remains unknown whether interpolation among a small num-

ber of Fourier kernels is sufficient to address the complicated 

anisotropic behaviors. For example, in both [21] and [22], the 

geometric response of the PET system is approximately iso-

tropic, whereas the geometric sampling pattern in helical CT is 

anisotropic when the helical pitch is not close to 0.5 or 1.0. 

This paper extends the multi-channel preconditioner in [24] 

and proposes a new space-variant non-diagonal preconditioner 

for 3D CT reconstruction. Instead of directly modeling the lo-

cation-dependent, anisotropic local responses of the Hessian 

matrix, the new preconditioner is based on an approximate up-

per bound of the local response of the Hessian matrix, which 

further leads to an approximate Fourier-domain majorizer of 

the cost function. Similar to [24], the new preconditioner is 

composed of multiple channels representing different fre-

quency sub-bands and/or orientations to provide flexibility in 

controlling its local spectral response. Certain preconditioning 

channels are implemented as image-domain filters with a very 

small footprint to reduce the computational cost relative to 

FFTs. Finally, unlike previous non-diagonal preconditioning 

methods that typically rely on a line search to ensure conver-

gence, the proposed method is empirically implemented as 

closed-form iterations with a fixed step size and thus can be 

easily combined with other acceleration techniques such as or-

dered subsets (OS) and Nesterov’s optimal gradient methods. 

The new preconditioning method can be used to accelerate the 

convergence rate of a wide range of gradient-based simultane-

ous-update algorithms that are highly parallelizable and suita-

ble for implementation on many-core computing devices. 

II. BACKGROUND

A. Cost function

Consider MBIR that minimizes a regularized negative log-

likelihood function: 

�� = argmin� Φ���,	 	 	 Φ��� ≜ −���; ��� + ����.
where � ≜ {��, … , �!} denotes an image of the object, e.g. at-

tenuation coefficients at each voxel location; � ≜ {#� , … , #$}
represents projection measurements; � = {%&'} with %&' ≥ 0
is an *×, “system” matrix representing a discrete-discrete

model of the Radon or x-ray transform; -��.& ≜ /̂& ≜

∑ %&'�'!'2�  is an estimated line integral value in measurement3;  −��∙,∙� is a negative log-likelihood function (i.e., a data-

fit term); ��∙� is an image-domain regularization function.

We further assume #&  ’s are statistically independent, thus

their joint log-likelihood is the sum of individual log-likeli-

hoods: 

���; ��� ≜5�&�#& ; /̂&�
$

&2�
.

A widely-used choice of �&�∙,∙�  for non-photon-starved CT

data is the weighted-least-squares (WLS)  

�&678�#; /̂� ≜ −12:& ;/̂ − log >&#&?
@,

where :& ≥ 0  is a statistical weighting factor that typically

reflects the variance of the statistical noise in #&   [25][26];>& > 0 is a blank measurement of un-attenuated x-ray intensity.

The WLS formulation assumes any non-positive measured 

projection values and physical factors such as beam hardening 

have been pre-corrected so that #& > 0  [27][28]. For more

general non-quadratic log-likelihood functions, the statistical 

weight :&  is defined as the second derivative of �&�∙,∙� with

respect to #B&:
C ≜ −diag E F@F#B&@ �&�#&; #B&�G = diag{:&}.

The regularization function ���� in this paper corresponds

to the log prior of a Markov random field (MRF)  

���� =55H'IJKΔ'IM
!

IN'

!

'2�
.	

with H'I = HI' ≥ 0  representing the penalty strength be-

tween pixels O  and P , Δ'I ≜ �' − �I  denoting the differ-

ence in pixel values, and J�Δ� = J�|Δ|� denoting a prior po-

tential function. We assume J�⋅� is convex and twice differ-

entiable. We also assume and J′′�⋅� is bounded. Without loss

of generality, J�⋅� is scaled such that

0 ≤ JTT�⋅� ≤ 1. (1)

B. Hessian matrix and local spectral analysis

The ,×, Hessian matrix of the cost function is the sum of

the data-fit and regularization components 

U ≜ ∇@Φ��� = �WC�+ X, (2)

with its entries denoted by ℎ'I = Z'I + ['I , Z'I =∑ %&':&%&I$&2�  , and ['I = −H'IJTTKΔ'IM  for P ≠ O  and ['' =−∑ ['II]' .

  The Hessian matrix is space-variant but can be assumed lo-

cally space-invariant [29], [30]. For a local neighborhood 

around voxel O, one can approximate U by a convolution op-
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erator whose impulse response is the sum of the impulse re-

sponses of the data-fit and regularization terms: 

^' = _' + `' , (3)

where ^' ≜ Ua' , _' ≜ �WC�a' , `' ≜ Xa' , and a'  de-

notes the Oth unit vector. Under this assumption, U can be lo-

cally diagonalized by the Fourier transform. The local spectral 

representation of ^' is 

^' = bc�diag{d'}ba' = bc�diag{e' + f'}ba' , 
where d' ≜ b^' , e' ≜ b_' , f' ≜ b`'  are discrete local 

spectra (or eigenvalues) of U , �WC� , and X , respectively, 

and b represents the discrete 3D Fourier transform. The con-

tinuous-frequency representation of d', e', and f' (i.e., dis-

crete-space Fourier transform, DSFT, of the discrete signals ^', _', and f') are denoted by g'��h�, i'��h�, and j '��h�, re-

spectively, where �h ≜ K�k, �l, �mMW  denotes spatial frequen-

cies in 3D and each element of �h has units of cycles per pixel. 

The i'��h� spectrum resembles the well-known 1/|��| low-

pass spectral characteristics of tomographic problems, with 

|��| ≜ n�k@ + �l@ denoting the magnitude of the radial compo-

nent of �h . Conversely, the j '��h�  spectrum has high-pass 

characteristics. These local impulse responses and spectra are 

location-dependent and anisotropic due to the high dynamic 

range of the statistical weight :&  and, in helical scans, also 

due to the space-variant geometric responses. 

C. Preconditioner 

We first consider the preconditioned gradient descent algo-

rithm with a unit step size as an example:  

���op�� = ���o� −qr∇ΦK���o�Ms	= ���o� +qt�Wr∇���; ����o��s − ∇�K���o�Mu, (4)

where ���o� denotes the reconstructed image at the vth itera-

tion; the preconditioner q  is a positive-definite ,×,  ma-

trix; ∇���; w�� ≜ x yzy{B| , yzy{B} , … , yzy{B~�
W

  denotes the gradient 

vector of ���; w��  with respect to w� ; and ∇���� ≜
x y�y�| , y�y�} , … , y�y���

W
 denotes the gradient vector of the regular-

izer.  

  The choice of the preconditioner q does not alter the fixed 

point(s) of (4), but can dramatically impact its convergence 

properties. For quadratic cost functions, (4) is a contraction if 

the spectral radius ��qU� < 2. The asymptotic rate of con-

vergence of (4) is governed by the condition number of qU. 

Ideally q�����U = Uq����� = �, which implies 

U������' = a' ,	 	 	 O = 1,2, … , ,. (5)

where ������'
 is the Oth column of q�����c� . Because U is lo-

cally a convolution operator, (5) can be written as 

^'⊗������' ≈ a' , (6)

where ⊗ denotes 3D convolution. To proceed, q is also as-

sumed locally a convolution operator. The local impulse re-

sponse of q	 at voxel O is denoted by  

�' ≜ qa' = bc�diag{�'}ba', (7)

where	 �' ≜ b�' is the discrete local spectrum (or eigenval-

ues) of q. The continuous form of �' (i.e., DSFT of the dis-

crete signal �') is denoted by �'��h�. Under the local space-

invariance assumption, a Fourier-domain representation of (6) 

is 

������' ��h� ≈ 1g'��h�. (8)

However, directly implementing (6) or (8) is impractical be-

cause of the high computational cost associated with generat-

ing, storing, and applying such a preconditioner. The central 

topic of this paper is designing preconditioner that is both ef-

fective and efficient.  

III. FOURIER DOMAIN UPPER BOUND OF HESSIAN MATRIX 

This section derives approximate upper bounds of the local 

spectra i'��h�, j '��h�, and g'��h�.  

A. Upper bound of data-fit term i�'��h� 
  Analytically modeling the anisotropic and space-variant be-

havior in i'��h� could be possible [31][32], but likely to be 

overly complicated for the purpose of preconditioning. For 

simplification, an upper bound of |i�' ��h�| is considered. After 

a series of approximations, which we will describe in more de-

tails in a following publication, we obtain an approximate up-

per bound of �i'��h�� 
�i'��h�� ≤ i�'��h� ≜ median Ei���' , �i���

'
|��| , i���' G, (9)

where � is a constant scale factor. Typically i���' ≫ i���' . The i���'   parameter governs the DC response, the i���'   parameter 

governs the high frequency AC response, and the 1/|��| term 

governs the intermediate frequency response.  

B. Upper bound of regularization term j�'��h� 
We make a similar spectral analysis for the local impulse 

response of the Hessian matrix of the regularization term, de-

fined as `' in (3). The DSFT of `', denoted by j '��h�, has 

high-pass characteristics: the smallest value in |j '��h�| is zero, 

which corresponds to DC; and the largest value in |j '��h�|  

corresponds to the Nyquist frequency. With edge preserving 

regularization, j '��h�  is object-dependent and anisotropic, 

making preconditioning difficult. This paper proposes an ob-
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ject-independent upper bound of |j '��h�| to simplify the de-

sign of the preconditioner. The dependency on the object � is

removed based on (1). After a series of approximations, which 

we will describe in more details in a following publication, we 

obtain an approximate upper bound of |j '��h�| in 3D

|j '��h�| ≤ j� '��h�	≜ j��' sin@ ��� cos@ ��m + j��m' sin@ ��� sin@ ��m, (10) 

where j��'  parameter represents the highest frequency re-

sponse in-plane, and the j��m'  parameter represents the highest

frequency response in 3D. The j� '��h�  spectrum is approxi-

mately circular symmetric in-plane and depends on only two 

parameters j��'  and j��m'  . The j��'  term corresponds to high

frequency in the radial direction but low frequency in the z di-

rection, whereas the j��m'  term corresponds to high frequency

in both the radial and z directions. Not considered in (10) is the 

low frequency response in the radial direction, because the 

magnitude of such a component is very small when compared 

to the low frequency response of the data-fit term i'��h�.
C. Upper bound of overall Hessian g�� ��h�

The local spectrum of the overall Hessian matrix is bounded 

by the sum of the data-fit term (9) and the regularization term 

(10) 

�g'��h�� ≤ �i'��h�� + �j '��h�� ≤ i�'��h� + j� '��h� ≜ g�'��h�,
where 

g�'��h� = median �i���' , �i���
'

|��| , i���' �+ j��' sin@ ��� cos@ ��m+ j��m' sin@ ��� sin@ ��m.
(11) 

is determined by four coefficients: i���'  , i���'  , j��' , and j��m'  . 

The low-frequency end of the g�'��h� spectrum is dominated

the data term i'��h�, whereas the high-frequency end of the

spectrum is more influenced by j '��h� . Overall, the g�'��h�
spectrum is an approximate majorizer of �g'��h��. Unlike con-

ventional surrogate functions that are constructed in the space-

domain, here g�'��h� is constructed as an approximate surro-

gate function in the Fourier domain.  

IV. MULTI-CHANNEL PRECONDITIONER

  The local spectrum of the proposed preconditioner, denoted 

by �'��h� , is intended to be approximately the reciprocal ofg�'��h�:
�'��h� ≈ 1

g�'��h� ≤
1|g'��h�| ≈ |������' ��h�|. (12) 

Compared to the ideal preconditioner (6), the �'��h� spectrum

is based on the analytical expression (11) which depends on 

only four parameters per voxel location O. Equation (12) also

suggests that the proposed preconditioner has lower frequency 

amplification compared to the ideal preconditioner. Thus, the 

spectral radius of the preconditioned Hessian matrix is less 

than one: 

��qU� ≈ max��'��h�g'��h�� ≤ max��'��h���g�'��h�� ≈ 1.
This condition suggests that the convergence of (4) may be 

achieved by a unit step size without the need of a line search.  

However, (11) and (12) do not immediately provide a prac-

tical implementation because �'��h� still depends on the voxel

location O, and at each location (12) corresponds to an imprac-

tical infinite impulse response filter typically. To further sim-

plify, recall that g�'��h� is dominated by different factors in dif-

ferent frequency bands, suggesting �'��h� may be empirically

approximated by a channelized or filter-bank formulation 

where each channel represents a frequency sub-band that is 

much simpler to implement than (14). This paper proposes to 

approximate 
�

 ¡ ¢�£¤¤h� by four (¥ = 4) frequency channels:

1
g�'��h� ≈ �'��h� ≜ 5�I'��h�

§

I2�
≜5¨I'�I��h�

§

I2�
, (13)

where the spectrum of the Pth channel, denoted by �I'��h�, is
factored as ¨I'�I��h� so that its dependences on �h and O are

decoupled: the “kernel” of the Pth channel, denoted by �I��h�,
is space-invariant (independent of O), but a modulation factor¨I'   depends on the voxel location O  [22]. The proposed�I��h� and ¨I'  are detailed below.

1) The first channel (P = 1) in (13) accounts for the DC and

very low-frequencies.

¨�' ≜ 1
i���' ,	 	 	 ����h� ≜ 1.

This channel can be simply implemented in the space domain 

as a voxel-wise scaling operation like the SQS preconditioner. 

It has a minimal computational overhead.  

2) The second channel (P = 2 ) accounts for the low-to-me-

dium frequencies.

¨@' ≜ 1
�i���' , �@��h� ≜ cos@ ���1|��| + P© sin@ ���

,
where �@��h� is an apodized ramp-filter, with its gain (or slope)

modulated by ¨@'. The Hann window in the numerator and theP© sin@ �|��|  term in the denominator suppress its high fre-

quency response. We empirically choose P© =50, a unitless

scale factor. Further optimization of the apodization terms has 

not been performed. This channel is implemented in the Fou-

rier domain by FFTs like the diagonal-circulant preconditioner 

in [21], but the frequency response �@��h�  and the spatial

weighting factor ¨@' proposed here are derived differently.

3) The third channel (P = 3) accounts for the high frequency

in-plane (x-y) and low frequency across-plane (z).

¨«' ≜ 1
i���' + j��' , �«��h� ≜ sin@ ��� cos@ ��¬ .
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Instead of implementing this channel in the Fourier domain by 

FFTs, we more efficiently approximate it as an image-domain 

filter with a very small 3×3×3 kernel:  

ker« = 164 ¯
−1 −2 −1−2 12 −2−1 −2 −1° ⊗ -1,2,1.¬ 

where -… .m  denotes a vector in the z  dimension, and  ⨂ 

denotes 3D convolution. The 1/64 factor normalizes the fre-

quency response to unity at the Nyquist frequency.  

4) The fourth channel (P = 4) accounts for the high frequency 

both in in-plane (x-y) and across-plane (z). 

¨³' ≜ 1
i���' + j��m' , �³��h� ≜ sin@ ��� sin@ ��m. 

Similar to �«��h�, we also approximated this channel as an im-

age-domain filter with a 3×3×3 kernel 

ker³ = 164 ¯
−1 −2 −1−2 12 −2−1 −2 −1°⊗ -−1,2, −1.¬ . 

  The channelized approximation (13) leads to the proposed 

multi-channel preconditioner: 

q =5diag{´I}�/@qI diag{´I}�/@
§

I2�
	 , (14) 

where ´I ≜ �¨I� , … , ¨I!�W  is the vector form of the spatial 

gain factor ¨I'  ; qI = bc�diag{�I}b  is a positive-definite 

convolution operator; �I  defines the spectral kernel of the Pth channel; and ´I is a spatial weighting factor for the chan-

nel at different spatial locations. We obtain �I  by discrete 

sampling of the continuous spectrum �I��h�. By splitting the 

preconditioner into different channels, the gains of individual 

channels can be independently and space-variantly controlled, 

giving certain flexibility to incorporate space-variant effects. 

If only the first channel is enabled (other channels gains set to 

zero), the multichannel preconditioner reduces to a diagonal 

practitioner. Similarly, if only the second channel is enabled, it 

reduces to a “combined circulant-diagonal” preconditioner 

[21][23]. As described earlier, we implement the individual 

preconditioning channels qI   in space-domain or Fourier-

domain for the best computational efficiency. 

A. Combination with other acceleration techniques 

  In addition to applying the proposed preconditioner (14) di-

rectly to gradient descent iterations (4), its property as a Fou-

rier domain surrogate function allows relatively straightfor-

ward combinations with other independent acceleration tech-

niques. In addition to the widely used combination of precon-

ditioning with CG and line search [12][34][22], the proposed 

preconditioner can be combined with ordered subsets (OS) 

[35][36][15] and Nesterov’s optimal gradient method [37], 

[38], and their combinations [39][40][41][42][43]. These com-

bined algorithms will be described in more details in a follow-

ing publication. 

V. RESULTS 

A. CT data and reconstruction settings 

Evaluation of the proposed preconditioner was performed 

with a retrospective adult patient dataset who underwent chest 

CT as part of clinical work-up, with institutional review board 

approval and written informed consent. The dataset was ac-

quired on a GE Discovery CT750 HD scanner (GE Healthcare, 

Waukesha, WI) with 64-row collimation, helical pitch of 33/64, 

120 kVp, 20 mA, and gantry speed of 0.5 s per rotation. Images 

were reconstructed on a grid of 512×512×25 over a field-of-

view of 50 cm and with a slice thickness of 0.625 mm. All 

MBIR reconstructions were based on the same cost function 

formed by a post-log WLS data-fit term and a q-GGMRF edge-

preserving regularizer [25]. The distance-driven model was 

used in forward and back projectors [44]. All MBIR recon-

structions were initialized with FBP images with standard ker-

nel. No non-negativity constraint of image voxel values was 

enforced during MBIR. All parameters of the proposed pre-

conditioner were determined at the beginning of the iterations.    

B. Speed of convergence 

The convergence speeds of 11 gradient-based simultaneous-

update MBIR algorithms with various preconditioning and ac-

celeration techniques were compared (Tab. 1).  

Tab. 1. MBIR algorithms implemented. 

SQS-GD Gradient descent (4) with the SQS diagonal precon-

ditioner [15] 

SQS-Nes SQS with Nesterov momentum acceleration [42] 

SQS-OS12 SQS using OS with 12 subsets in bit reversal order 

SQS-OS6-Nes SQS using OS with 6 subsets and Nesterov momen-

tum acceleration [42] 

SQS-OS12-Nes Same as SQS-OS6-Nes, but with 12 subsets 

SQS-CG SQS with conjugate gradient and line search [22] 

MM-GD Gradient descent (4) with the proposed multi-chan-

nel preconditioner (14). 

MM-Nes MM with Nesterov momentum acceleration [42] 

MM-OS12 MM using OS with 12 subsets in bit reversal order 

MM-OS6-Nes  MM using OS with 6 subsets and Nesterov momen-

tum acceleration 

MM-CG MM with conjugate gradient and line search [22] 

 

Fig. 1 compares the convergence speeds of various MBIR 

algorithms. The level of convergence was quantified by root-

mean-square difference (RMSD) relative to the reference re-

construction obtained by 4,000 SQS-GD iterations. MM-GD 

achieved substantially faster reduction of the RMSD than the 

classic diagonal SQS preconditioner (SQS-GD). When com-

bined with independent acceleration techniques such as 

Nesterov momentum (MM-Nes), OS (MM-OS12), 

OS+Nesterov (MM-OS6-Nes), and conjugate gradient with 

line search (MM-CG), the proposed preconditioner achieved 

further acceleration relative to the standard preconditioned 

gradient descent (MM-GD). These combined algorithms based 

on the proposed preconditioner were also faster than the coun-

terpart algorithms based on the SQS preconditioner (SQS-Nes, 

SQS-OS12, SQS-OS6-Nes, and SQS-CG. Overall, among all 
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the convergent, non-OS algorithms, “MM-CG” achieved the 

fastest convergence speed. Among all the semi-convergent OS 

algorithms, both MM-OS6-Nes and SQS-OS12-Nes achieved 

the fastest initial convergence speeds, although SQS-OS12-

Nes resulted in instability and diverged after 20 iterations.  

A small residual RMSD of about 3 HU remained after 100 

iterations of the proposed algorithms as shown in Fig. 1. This 

suggests that the iterative process may have a slow-converging 

component regardless of the various acceleration techniques 

used. The residual error may be related to the boundary effect 

of the reconstruction field of view, where the local shift invar-

iance approximation may be less accurate. 

Fig. 1. Convergence curves of different algorithms. 

VI. CONCLUSIONS

A new non-diagonal preconditioner is proposed for acceler-

ation of space-variant 3D reconstruction problems in x-ray CT. 

The proposed preconditioner is based on an approximate ma-

jorizer of the cost function. Leveraging a multi-channel formu-

lation, the proposed preconditioner results in closed-form iter-

ations with a computational overhead of one Fourier transform 

and its inverse. The proposed method can be further acceler-

ated by independent techniques including ordered subsets, 

Nesterov momentum, conjugate gradient, and their combina-

tions. Image reconstruction from clinical CT data shows that 

the proposed preconditioner, with and without combination 

with other acceleration techniques, provides substantially 

faster convergence than the counterpart algorithms based on 

the classic diagonal preconditioner. 
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