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Sparse-View X-Ray CT Reconstruction Using ¢,
Regularization with Learned Sparsifying Transform

Il Yong Chun, Xuehang Zheng, Yong Long*, and Jeffrey A. Fessler

Abstract—A major challenge in X-ray computed tomography
(CT) is to reduce radiation dose while maintaining high quality
of reconstructed images. To reduce the radiation dose, one
can reduce the number of projection views (sparse-view CT);
however, it becomes difficult to achieve high quality image
reconstruction as the number of projection views decreases.
Researchers have shed light on applying the concept of learning
sparse representations from (high-quality) CT image dataset to
the sparse-view CT reconstruction. We propose a new statistical
CT reconstruction model that combines penalized weighted-least
squares (PWLS) and ¢; regularization with learned sparsifying
transform (PWLS-ST-/;), and an algorithm for PWLS-ST-/;.
Numerical experiments for sparse-view CT show that our model
significantly improves the sharpness of edges of reconstructed
images compared to the CT reconstruction methods using edge-
preserving hyperbola regularizer and /¢ regularization with
learned ST.

I. INTRODUCTION

Radiation dose reduction is a major challenge in X-ray
computed tomography (CT). Sparse-view CT reduces dose
by acquiring fewer projection views [1], [2]. However, as the
number of projection views decreases, it becomes harder to
achieve high quality (high resolution, contrast, and signal-to-
noise ratio) image reconstruction. There have been extensive
studies for sparse-view CT reconstruction with total variation
[3], [4] or other sparsity promoting regularizers [1], [2]. This
paper investigates learned sparsifying transforms for regular-
ization.

Learning prior information from big datasets of CT images
and exploiting it for CT reconstruction is a fascinating idea.
In particular, patch-based sparse representation learning frame-
works [5], [6] have been successfully applied to improve low-
dose CT reconstruction [7], [8]. However, CT reconstruction
with a /5 regularizer using a learned sparsifying transform
(ST) had difficulty in reconstructing sharp edges [8].

This paper proposes /) a new (statistical) CT reconstruc-
tion model that combines penalized weighted-least squares
(PWLS) and ¢; regularization with learned ST (PWLS-ST-
¢1) and 2) a corresponding algorithm based on Alternating
Direction Method of Multipliers (ADMM) [9]. Numerical ex-
periments with the XCAT phantom show that, for sparse-view
CT, the proposed PWLS-ST-¢; model significantly improves
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the edge sharpness of reconstructed images compared to a
PWLS reconstruction method with an edge-preserving (EP)
hyperbola regularizer (PWLS-EP) and to ¢, regularization with
a learned ST (PWLS-ST-/5 [8]).

II. METHODS
A. Offline Learning Sparsifying Transform
We pre-learn a ST by solving the following problem [6]:
min
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where ¥ € R"*" is a square ST, {x; e R": j =1,...,J'}
is a set of patches extracted from training data, z; e R”
is the sparse code corresponding to the jth patch x;, J'is
the total number of the image patches, and 7/, 7,£ € R are
regularization parameters. The £y function || - || counts the
nonzero elements in a vector.

B. CT Reconstruction Model Using {1-Regularization with
Learned Sparsifying Transform: PWLS-ST-{,

To reconstruct a linear attenuation coefficient image x € RY
from post-log measurement y € R™ [2], [10], we solve the
following non-convex optimization problem using PWLS and
the ST W learned via (1):*

_min 5y~ Axly A [Bx g 4y fally @
where ~
vP, Z1
= : and z =
PP | ZJ

Here, A € R™*" is a CT scan system matrix, W € R™*™ is
a diagonal weighting matrix with elements {W;; = p?/(p; +
%) :1=1,...,m} based on a Poisson-Gaussian model for
the pre-log measurements p € R™ with electronic readout
noise variance o2 [2], [12], P, c R™N is a patch-extraction
operator for the jth patch, z; € R™ is unknown sparse code
for the jth patch, J is the number of extracted patches, and
A, € R are regularization parameters.

The term ||®x — z|; denotes an ¢;-based sparsification
error [13]. We expect ¢; to be more robust to model mismatch
than the ¢5-based sparsification error used in [8]. In particular,

4n [11], a similar approach is introduced with a “dictionary” (or synthesis)
perspective and solved by a reweighted-¢o minimization. Here we directly
attack ¢1 minimization—see Section II-C.
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Ux — 2|1,

|2 in [8]; see

the proposed /;-based sparsification error term,
preserves edge sharpness better than | ¥x — z
Fig. 1 and Table 1.

C. Proposed Algorithm for PWLS-ST-{1

To solve (2), our proposed algorithm alternates between up-
dating the image x (image update step) and the sparse codes z
(sparse coding step). For the image update, we apply ADMM
[2], [4], [9]—simply put, it introduces an auxiliary variable to
separate the effects of a certain variable or combinations of
variables (called variable splitting in [4], [14]). For efficient
sparse coding, we apply an analytical solution for z. The
next three subsections provide algorithmic details for solving
(2), summarize them in Algorithm 1, and provide underlying
intuitions.

1) Image Update - ADMM: Using the current sparse code
estimates z, we update the image x by augmenting (2) with
auxiliary variables:

min

1 2
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The corresponding augmented Lagrangian has the form
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We descend/ascend this augmented Lagrangian using the
following iterative updates of the primal, auxiliary, dual

variables—x, {d,, dy}, and {b,, by}, respectively:
J
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? u  (V
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bi+D) = bl — (daiJrl) _ AX(iJrl)) :
(i+1) _ 1.(%) (i+1) o (i+1
b = b — (aftV - (IxD 7)),
where the soft-shrinkage operator is defined by
softshrink(ev, 3) =  sign(a)max(la] — £,0). To

approximately solve (3), we use the preconditioned conjugate
gradient (PCG) method with a circulant preconditioner M
for ATA + VZ;.le PJT\IIT\IIPj. For the two-dimensional
(2D) CT problem, a circulant preconditioner is well suited
because /) it is effective for the “nearly” shift-invariant
matrix ATA [2], [4] and 2) ijl PTWTWP; is a block
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Algorithm 1 PWLS-ST-/; CT Reconstruction
Require: y, xV), z(), W learned from (1), M, W,
A v >0,0=1
while a stopping criterion is not satisfied do
for i/ = ].7 . ,IterADMM do
Obtain X'V by solving (3) with PCG(M)
Al = (Woul,) ™ Wy AXE D400 )

)\)’

df;‘}l) = softshrink (({Ivli(i/+1)—z(i)+b(i/)) ;
d v )i v

j=1...,nJ
b((li’+1) _ b((lz") o d((li’+1) _ AxE+D
b$’+1) _ bs;’) _ df/f,“) _ (‘i,i(iurl) _ Z(i)))’
end for

X(i+1) — )'*((IterADMM—‘rl)

z](.iﬂ) = hardshrink(('i[le(”l)) R X), ji=1,...,nJ
J
=1+ 1
end while

circulant circulant block (BCCB) matrix when we use the
overlapping “stride” 1 and the “wrap around” image patch
assumption [15, Prop. 3.3].° PCG(M) denotes PCG method
using a preconditioner M; see Algorithm 1.

2) Sparse Coding: Given the current estimates of the image
x, we update the sparse codes z by solving the following
optimization problem:

s

min A\
zcR"J

+ izl )

We efficiently solve (5) by an element-wise operator:

y

P

2z} = hardshrink ( (\Tlx)
j

>, j=1...,nd, (6)
where the hard-shrinkage operator is given as follows:
hardshrink(a, ) is equal to « if |a|] > 3, and is 0 otherwise.
Note that ~ should be properly determined based on the
(estimated) intensity of Wx. If v is too small compared
to the intensity, the operator in (6) may remove the sparse
code coefficients corresponding to some edges in low-contrast
regions (e.g., soft tissues); if ~y is relatively too large, it does
not properly remove noise (or unwanted artifacts).

3) Parameter selection based on condition numbers: In
practice, the ADMM methods can require difficult parameter
tuning processes for fast and stable convergence. We moderate
this problem by selecting ADMM parameters (e.g., v, (1)
based on condition numbers [4]. Observe that, for two square
Hermitian matrices A and B,

(A + B) Umax(A) + Omax (B)
(A + B) o Umin(A) + UIIlin(B) 7

k(A + B) = Jmax

Omin

(N

by Weyl’s inequality, where the notations k(:), omax(-), and
omin(+) denote the condition number, the largest eigenvalue,

bFor an orthogonal transform ¥, ijl P?\IIT\IIP]' can be approximated
by (n/t)In (¢ denotes the stride parameter), i.e., a circulant preconditioner
is still a reasonable choice for the 2D projection matrix A.
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and the smallest eigenvalue of a matrix, respectively. Applying
the bound (7) to (3), we select v by

_ Urnax(AA) — Rdes,v * Umin(AA)
Rdes,v * Umin(A(I',) - Umax(A(i,)

®)

where kges,, denotes the desired “upper bounded” condition
number of ATA + VZj:l P?WTWPj, and Apx and Ag
are approximated diagonal eigenvalue matrices of ATA and
WTW by using their preconditioners in Section II-C1, respec-
tively. Note that equality holds in (7) when either A or B is a
scaled identity matrix. In other words, Kqes,,, becomes close to
the condition number of ATA + v 23'121 PTUTWP;, when
the learned ST W is close to orthogonal. We select i for (4)
by

Umax(w) - ﬁdes,ﬂ * Omin (W)

: ©)

M:

b
Rdes,u —

where Kges,,, denotes the desired condition number of W +
pL,, in (4). We empirically found that Kdes v, Kdes, € [10, 40]
are reasonable values for fast and stable convergence.

4) Intuitions behind Algorithm [: The underlying idea
of the image reconstruction model (2) is that the signal is
very sparse in the learned transform (W)-domain, i.e., ¥x
has a few large coefficients, usually corresponding to local
high-frequency features (e.g., edges). Thresholding in the
sparse coding step, i.e., (6), removes the noise in the other
components while preserving the large signal coefficients.
Substituting the denoised sparse codes z to the image updating
optimization, we estimate an image x close to the denoised
sparse codes in W-domain, while being robust to the model
mismatch in ¥x and z. Repeating these processes, we expect
to obtain reconstructed images with higher accuracy.

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. Experiment Setup

We pre-learned square STs from 8 x 8 image patches
extracted from five different slices of an XCAT phantom (with
1 x 1 overlapping stride) [16]. We chose a large enough T,
e.g., T=>5.85x10', to learn well-conditioned transforms. We
chose v/ = 110 and £ = 1. We ran 1000 iterations of the
alternating minimization algorithm proposed in [6] to ensure
learned transforms are completely converged.

Our experiments used a simulated (2D) fan-beam CT scan
of a 1024 x 1024 slice of the XCAT phantom, which is
different from the learning slices, and A, = A, = 0.4883
mm. We simulated sinograms of size 888 (detectors or rays)
x 246, 123 (regularly spaced projection views or angles;
984 is the number of full views) with GE LightSpeed fan-
beam geometry corresponding to a monoenergetic source with
po = 10° incident photons per ray and no background events,
the conversion gain ¥ = 1000 (electrons per incident X-ray
photon) [17], and electronic noise variance o2 = 3302. We
reconstructed a 512 x 512 image with a coarser grid, where
Ay =A,=0.9766 mm.

For PWLS-EP with hyperbola regularizer ¢(t)
82(\/1+[t/8]2 — 1) (6 = 10 in Hounsfield units, HU), we
used relaxed linearized augmented Lagrangian method with
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TABLE I
RMSE (HU) OF DIFFERENT X-RAY CT RECONSTRUCTIONS WITH
DIFFERENT NUMBER OF PROJECTION VIEWS (pg = 10°)

N . PWLS- PWLS- PWLS-
Views Measure FBP EP ST-ly ST,

246 RMSE 60.3 32.6 30.3 25.2

123 RMSE 82.0 37.0 33.2 28.7

ordered-subsets proposed in [18] to accelerate the reconstruc-
tion. Initialized with filtered back projection (FBP) recon-
structions (Hanning window), we chose the regularization
parameter as 22! and 22°-5 for 246 and 123 views, respectively.
We ran the algorithm with 100 iterations and 10 subsets.

We evaluated PWLS-ST-¢; with the algorithm in [8] but
without the non-nonnegativity constraint for image update.
For both PWLS-ST-¢; and PWLS-ST-/5, we used converged
PWLS-EP reconstructions for initialization and set a stopping
criterion by meeting the maximum number of iterations, e.g.,
Iter = 200. For the image update, we set Iterapym as 2 (2
PCQG iterations) for PWLS-ST-/;; and set 12 rLALM iterations
(rLALM stands for relaxed linearized augmented Lagrangian
method [8]) without ordered subsets for PWLS-ST-/5.

We finely tuned the parameters ),y to achieve the lowest
root mean squared error (RMSE) in image reconstruction.
We tuned v, i through the condition number based selection
schemes, i.e., Kdes,, in (8) and Kges,, in (9). For PWLS-ST-
£y, we chose {\, 7/, Kdes,v; Kdes,u } as follows: for 246 views,
{1.1x10%, 80, 30, 30}; for 123 views, {9x108, 80, 30, 30}. For
PWLS-ST-¢; [8], we chose {\,~} as follows: for 246 views,
{1.5x1013,20}; for 123 views, {8x10'2,20}. Note that A and
~ are in HU.

We evaluated the reconstruction quality by the RMSE (in
HU) in a region of interest (ROI).© The RMSE is defined
by RMSE := (Y150 (& — 7)?/Nror) /2, where % is the
reconstructed image (after thresholding non-negative values),
x* is the ground truth image, and Nror is the number of
pixels in a ROL

B. Results and Discussion

Table I shows that the proposed PWLS-ST-/; model out-
performs PWLS-EP and PWLS-ST-/; in terms of RMSE.
In particular, PWLS-ST-¢; resolves the blurry edge problem
in PWLS-ST-/5; see Fig. 1. The edge-preserving benefit of
PWLS-ST-¢; over PWLS-ST-{3 can be explained when there
exist some outliers for some z(+1: |[Tx — z(*+D|; in (2)
gives equal emphasis to all sparse code coefficients—e.g., the
components corresponding to edges from low-contrast (e.g.,
soft tissue) to high-contrast (e.g., bone) regions—in estimating
x; however, PWLS-ST-/; adjusts x to mainly minimize the
outliers, i.e., it may not pay enough attention to reconstruct
edges on soft tissues. The proposed PWLS-ST-¢; model can
accomplish the both benefits of edge-preserving (achieved by
PWLS-EP) and image denoising (achieved by PWLS-ST-/5).

°The ROI in our experiment was a circular (around center) region containing
all the phantom tissues.
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Fig. 1. Comparison of reconstructed images from different X-ray CT reconstruction models with different number of views (pp = 10° and display window
is within [800, 1200] HU). The proposed PWLS-ST-¢1 consistently improves the sharpness of the reconstructed images over PWLS-ST-¢5.

IV. CONCLUSION

The proposed PWLS-ST-/; model achieves more accurate
sparse-view (2D) CT reconstruction compared to PWLS-
EP and PWLS-ST-/5; in particular, it leads to sharper edge
reconstruction compared to PWLS-ST-/,. Future work will
explore PWLS-ST-/; with the technique controlling local
spatial resolution or noise in the reconstructed images [19],
[20] in 3D CT to reduce blur, particularly around the center
of reconstructed image. The Appendix introduces the PWLS-
ST-¢; model encouraging uniform spatial resolution or noise;
see our preliminary results showing its effectiveness for 3D
CT in Fig. 2. On the algorithmic side, we plan to apply
block proximal gradient method using majorizer [21] to solve
nonconvex problem (2) faster.

APPENDIX: PWLS-ST-¢; ENCOURAGING UNIFORM
SPATIAL RESOLUTION OR NOISE

We first obtain parameter w € RY that controls local
spatial resolution or noise in reconstructed image [19], [20]:

m
Yoy AWy

m
=1 Al,u

Wy =

Using w, we compute the weighting parameters A" € R by
N, = [IP;wlli/n:j =1,...,J}. Similar to [20, (5)], we
apply {\} : j =1,...,J} to aregularizer in image update step
(problem related to x) of (2). We propose PWLS-ST-¢; model
promoting uniform spatial resolution or noise as follows:

J
1 )
x;g;@lly—Awa+;A6A;l\@ij—zj||1+v||zj||o.

(10)
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PWLS-ST-¢; promoting uniform

PWLS-ST-6, spatial resolution or noise

RMSE=234.8

Fig. 2. Comparison of 3D reconstructed images from PWLS-ST-¢; and
PWLS-ST-¢; integrating uniform spatial resolution approach [19], [20] (420x
420-sized images shown for central axial plane with [800, 1200] HU display
window; 3D cone-beam CT with pg = 104 and 888 x 64 x 123 sinograms;
PWLS-ST-¢; using 8 x 8 x 8 overlapping image patches with 3 x 3 x 3 patch
stride, PCG with diagonal majorizer M and 2 iterations for solving (3),
IteraApnvm =2, and Iter =200; the error measurements are calculated from
420x420x 64 reconstructed images). For 3D sparse-view CT, integrating the
approach controlling local spatial resolution or noise [19], [20] into PWLS-
ST-¢1 further improves the quality of reconstructed images.

Fig. 2 shows that, for 3D CT reconstruction, PWLS-ST-¢;
encouraging uniform spatial resolution or noise (10) improves
the accuracy of reconstructed images compared to the PWLS-
ST-¢1 (2). Alternatively, one can promote uniform spatial
resolution or noise as follows:
J
o1 2
min Sy — Ay + 3 N[ 8P x5 + 257121

; =
In other words, the sparse codes at the jth patch are thresh-
olded less when the corresponding A; has low values. This
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is expected to be useful to preserve edges around the center
(which has low A; values).

38 T I
——123 Views - {5

36 —123 Views - /1 |]

2l —==246 Views - (| |
=) —==246 Views - {;
T 3R
I A e N
@0 30t
P
oogh N,

S
Seel
26 [ T T
24

50 100 150
Number of outer iteration (7)

Fig. 3. RMSE convergence behavior for PWLS-ST-¢; and PWLS-ST-¢5 (123
and 246 projection views, and po = 107).
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