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Abstract—Convolutional dictionary learning (CDL) has great
potential to “learn” rich sparse representations from training
datasets, by training translation-invariant filters. However, the
performance of applying learned filters from CDL to inverse
problems has not yet been fully maximized because training data
preprocessing in training stage is not fully compensated in testing
stage. We propose CDL using Adaptive Contrast Enhancement
(CDL-ACE) that additionally models the preprocessing in CDL,
and image denoising model using learned filters from CDL-ACE.
For CDL-ACE, we apply a practically feasible and convergent
Block Proximal Gradient method using Majorizer (BPG-M) with
a momentum coefficient formula and an adaptive restarting
rule. Numerical experiments show that, for strong additive white
Gaussian noise, the proposed image denoiser using learned filters
by CDL outperforms existing image denoising methods using
Wiener filtering and total variation; and learned filters by CDL-
ACE further improves the denoiser.

I. INTRODUCTION

Convolutional dictionary learning (CDL; or convolutional
sparse coding [1]–[5]) can overcome the fundamental prob-
lems of patch-based dictionary learning [6], [7]: 1) translation-
variant dictionaries and 2) highly redundant sparse represen-
tations [5], [8]. In addition, CDL is closely related to (deep)
convolutional neural networks (CNN) [1], [8], [9]. Learned
filters by CDL have been successfully applied to various com-
puter vision problems (see references within [4], [5]); however,
applying them to inverse problems is not straightforward due
to model mismatch between training and testing stages. The
main reason for the model mismatch is that CDL learns
features from preprocessed training datasets (by, for example,
local contrast enhancement, high-pass filtering, and subtracting
the mean [1], [2], [4]); however, the preprocessing techniques
are not directly suitable for solving inverse problems [10].

We propose 1) CDL using Adaptive Contrast Enhancement
(CDL-ACE) which integrates the preprocessing principles
into the CDL formulation and 2) image denoising model
using learned filters from CDL-ACE. For CDL-ACE, we
apply a practically feasible and convergent Block Proximal
Gradient method using Majorizer (BPG-M)—which does not
require difficult parameter tuning processes for convergence
and acceleration—with a momentum coefficient formula and
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an adaptive restarting rule [5]. Numerical experiments show
that, for strong additive white Gaussian (AWGN) noise, the
image denoiser using learned filters by CDL-ACE signifi-
cantly improves the quality of denoised images compared to
Wiener filtering and total variation (TV) denoising methods.
In particular, the learned filters by CDL-ACE improves image
denoising compared to those trained by the conventional CDL,
by resolving the model mismatch.

II. CDL-ACE: MODEL

The proposed (2D) CDL-ACE problem is given by the
following joint optimization problem:

min
{dk},{zl,k},{ρl}

L∑

l=1

1

2

∥∥∥∥∥yl−
(

PB

K∑

k=1

dk~zl,k

)
−ρl

∥∥∥∥∥

2

2

+α
K∑

k=1

‖zl,k‖1 +
β

2
‖Cρl‖22

s.t. ‖dk‖22≤1, k= 1,. ..,K,

(1)

where {dk ∈ RD : k = 1, . . . ,K} is a set of convolutional
filters to be learned, {yl ∈ RN : l = 1, . . . , L} is a set
of training data, ~ denotes a circular convolution operator,
{zl,k ∈ RN : l = 1, . . . , L, k = 1, . . . ,K} is a set of sparse
codes, PB ∈ RN×N̂ is a projection matrix with |B| = N and
N ≤ N̂ [3], [5], B is a list of distinct indices from the set
{1, ..., N̂} that correspond to truncating the boundaries of the
padded convolution

∑K
k=1 dk~zl,k, {ρl ∈ RN : l = 1, . . . , L}

is a set of low-frequency component vectors, and C ∈ RN ′×N

is a regularization transform for adaptive contrast enhancement
of {yl} (see below). Here, D is the filter size, K is the
number of filters, N is the dimension of training data, N̂ is the
dimension after a convolution with padding, L is the number
of training images, and N ′ is a dimension of signal in the
transform C domain.1 Note that D � N̂ in general.

We reformulate problem (1) to a more convenient form.
Considering that the minimizer with respect to ρ is:

ρl ({zl,k}) =
(
βCTC+IN

)−1

(
yl−

(
PB

K∑

k=1

dk~zl,k

))
,

(2)

1In general, (̂·) denotes a padded signal vector or its dimension.
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we rewrite problem (1) as

min
{dk},{zl,k}

L∑

l=1

1

2

∥∥∥∥∥ỹl−R

(
PB

K∑

k=1

dk~zl,k

)∥∥∥∥∥

2

2

+α
K∑

k=1

‖zl,k‖1

s.t. ‖dk‖22≤1, k= 1,. ..,K,
(3)

where {ỹl := Ryl : l = 1, . . . , L} and

R :=
(
βCTC

)1/2(
βCTC+I

)−1/2
. (4)

Note that the reformulation (3) is valid with particular bound-
ary conditions (e.g., periodic and reflective) for {ρl}.2 The
filter C and its parameter β should be carefully designed so
that the “filter” R in (4) can mimic the nonlinear contrast
enhancement preprocessing widely used in CNN [1].

Using Parseval’s relation [2], problem (3) is equivalent to
the following joint optimization problem:

min
{dk},{ẑl,k}

L∑

l=1

1

2

∥∥∥∥∥ỹl−RPB

K∑

k=1

ΦHdiag(d̃k)Φẑl,k

∥∥∥∥∥

2

2

(5)

+α

K∑

k=1

‖ẑl,k‖1 , s.t. ‖dk‖22≤1, k= 1,. ..,K,

where Φ denotes the N̂ -point 2D unitary discrete Fourier
transform, {d̃k =

√
N̂ΦPT

Sdk : k = 1, . . . ,K} is a set of
the frequency responses of the padded filters, PT

S ∈ CN̂×D

is zero-padding matrix, S is a list of indices that corre-
spond to a small support of the filter with |S| = D, and
{ẑl,k ∈ CN̂ : l = 1, . . . , L, k = 1, . . . ,K} denotes sparse
codes. Note that applying augmented Lagrangian methods
(e.g., alternating direction method of multipliers) [2]–[5] to
solve (5) requires one more auxiliary variable for each of
{dk} and {ẑl} updates. In other words, one faces even trickier
parameter tuning processes. We apply BPG-M [5] which
guarantees convergence and avoids parameter tuning (except
the regularization parameters α, β).

III. CDL-ACE: CONVERGENT ALGORITHM

A. Convergent Fast BPG-M with Adaptive Restarting

1) Convergent Fast BPG-M: This section reviews the setup
of block multi-convex problem and summarizes fast BPG-M
[5]. Consider the optimization problem

min
x∈X

F (x1, . . . ,xB) := f(x1, . . . ,xB) +

B∑

b=1

rb(xb) (6)

where variable x is decomposed into B blocks x1, . . . ,xB

({xb ∈ Rnb}), the set X of feasible points is assumed to be
closed and block multi-convex subset of Rn, f is assumed
to be a differentiable and block multi-convex function, and

2Throughout the paper, we apply the reflective boundary condition for (4),
i.e., CTC and R in (4) are decomposed by cosine basis. We observed that
the reflective boundary condition improves about 0.1 dB peak signal-to-noise
ratio (PSNR) in image denoising applications.

rb are extended-value convex functions for b = 1, . . . , B.3 We
use r1, . . . , rB to enforce individual constraints of x1, . . . ,xB ,
when they are present. Importantly, rb can include nonsmooth
functions.

We are particularly interested in adopting the following
quadratic majorizer (i.e., surrogate function) model of the
composite function %(u) = %1(u) + %2(u) at a given point
v to the block multi-convex problem (6):

%̂M (u,v) = ψM (u; v) + %2(u),

ψM (u; v) = %1(v) + 〈∇%1(v),u− v〉+
1

2
‖u− v‖2M (7)

where %1(u) and %2(u) are two convex functions defined on
the convex set U , %1(u) is differentiable, and M = MT � 0
is so-called majorization matrix.

Based on majorizers of the form (7), fast BPG-M [5] is
given as follows. To solve (6), we minimize F cyclically over
each block x1, . . . ,xB , while fixing the remaining blocks at
their previously updated values. Let x

(i+1)
b be the value of xb

after its ith update, and

f
(i)
b (xb) := f(x

(i+1)
1 , . . . ,x

(i+1)
b−1 ,xb,x

(i)
b+1, . . . ,x

(i)
B ), (8)

for all b, i. The corresponding proximal mapping is given by

Proxrb

(
x́

(i)
b −

(
M

(i)
b

)−1
∇f (i)

b (x́
(i)
b );M

(i)
b

)

= argmin
xb∈X (i)

b

〈∇f (i)
b (x́

(i)
b ),xb− x́

(i)
b 〉+

1

2

∥∥∥xb− x́
(i)
b

∥∥∥
2

M
(i)
b

+rb(xb),

where ∇f (i)
b (x́

(i)
b ) is the block-partial gradient of f at

x́
(i)
b , X (i)

b = Xb(x
(i+1)
1 , . . . ,x

(i+1)
b−1 ,x

(i)
b+1, . . . ,x

(i)
B ), M

(i)
b ∈

Rnb×nb is a symmetric positive definite majorization ma-
trix for the Hermitian ∇2f

(i)
b (xb) � 0, ∀xb ∈ X (i)

b ,
and the proximal operator is defined by Proxr(y; M) :=

argminx
1
2‖x− y‖2M + r(x). The matrix W

(i)
b ∈ Rnb×nb ,

bounded by

0 �W
(i)
b � δ

(
M

(i)
b

)−1/2 (
M

(i−1)
b

)1/2

, δ < 1, ∀b, i,
(9)

is an extrapolation matrix [5] that significantly accelerates
convergence, in a similar manner to the extrapolation weight
introduced in [11]. Similar to [12], we apply some momentum
coefficient formulas w(i) to the extrapolation matrix updates
W

(i)
b to accelerate BPG-M [5]:

w(i+1) =
θ(i)−1

θ(i+1)
, θ(i+1) =

1+
√

1+4(θ(i))2

2
(10)

This choice guarantees fast convergence of fast proximal
gradient (FPG) method in [13]. For diagonal majorization

3A set X is called block multi-convex if its projection to each block
of variable is convex, i.e., for each b and any fixed B− 1 blocks
x1, . . . ,xb−1,xb+1, . . . ,xB , the set Xb(x1, . . . ,xb−1,xb+1, . . . ,xB) :=
{xb : (x1, . . . ,xb−1,xb,xb+1, . . . ,xB) ∈ X} is convex. A function f is
called block multi-convex if for each b, f is a convex function of xb,
when all the other blocks are fixed. Extended-value means rb(xb) = ∞ if
xb /∈ dom(rb), for b = 1, . . . , B. In particular, rb can be indicator functions
of convex sets.
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Algorithm 1 FBPG-M using a diagonal majorizer

Require: {x(1)
b = x

(0)
b : b = 1, . . . , B}, ω ∈ [−1, 0], i = 1

while a stopping criterion is not satisfied do
for b = 1, . . . , B do

Calculate M
(i)
b for f

(i)
b (xb) in (8)

Calculate W
(i)
b by (11) with M

(i)
b ,M

(i−1)
b , w(i)

x́
(i)
b = x

(i)
b + W

(i)
b

(
x

(i)
b − x

(i−1)
b

)

x
(i+1)
b = Proxrb

(
x́

(i)
b −

(
M

(i)
b

)−1

∇f (i)
b (x́

(i)
b ); M

(i)
b

)

end for
Update w(i+1) by (10)
i = i+ 1

end while

matrices M
(i)
b , M

(i−1)
b , the extrapolation matrix update is

given by
(
W

(i)
b

)
j,j

= δ ·min

{
w(i),

((
M

(i)
b

)−1

M
(i−1)
b

)1/2

j,j

}
,

(11)
where δ < 1 appeared in (9), for j = 1, . . . , nb. We refer
to BPG-M combined with the modified extrapolation matrix
updates (11) using the momentum coeff. (10) as Fast BPG-M
(FBPG-M). Algorithm 1 summarizes FBPG-M’s updates.

Note that, under some mild conditions (e.g., continuity,
lower-boundedness, and existence of critical points of F , etc
[5, Assumptions 1–3]), any limit point of {x(i)} generated
from Algorithm 1 is a stationary point; see details of the
convergence analysis in [5]. Applying (F)BPG-M to CDL(-
ACE) provides the first convergence guarantee in CDL. In
addition, (F)BPG-M methods gave lower objective values than
the block coordinate descent scheme in [2] for CDL [5], [11].

2) Restarting Fast BPG-M: To further accelerate FBPG-M,
we apply the adaptive momentum restarting scheme introduced
in [14] (after the proximal mapping problem is solved in
Algorithm 1). This technique restarts the algorithm when a
restarting criterion is satisfied:

x́
(i)
b =x

(i)
b ; (12)

x
(i+1)
b = Proxrb

(
x́

(i)
b −

(
M

(i)
b

)−1

∇f (i)
b (x́

(i)
b );M

(i)
b

)
. (13)

We adopt a gradient-mapping criterion (referred to reG) [5]:

cos
(

Θ
(
M

(i)
b

(
x́

(i)
b −x

(i+1)
b

)
,x

(i+1)
b −x

(i)
b

))
>ω, (14)

where the angle between two real vectors ϑ and ϑ′ is given
by Θ(ϑ,ϑ′) := 〈ϑ,ϑ′〉/

(
‖ϑ‖2‖ϑ′‖2

)
, and ω ∈ [−1, 0].

To solve the biconvex problem (5), we apply Algorithm
1 with adaptive restarting (12)–(13), promoting stable and
fast convergence. The following sections present separable
majorizers and introduce efficient proximal mapping methods.

B. Convolutional Dictionary (Filter) Update

1) Separable Majorizer Design: Using the current esti-
mates of the {ẑl : l = 1, . . . , L}, the filter update problem

for (5) can be rewritten by

min
{dk}

1

2

∥∥∥∥∥∥∥




ỹ1

...
ỹL


−Ψ




d1

...
dK




∥∥∥∥∥∥∥

2

2

, s.t.
‖dk‖22 ≤ 1,
k = 1, . . . ,K

,

(15)
where

Ψ :=
(
IL ⊗RPBΦH

)
Z̃
(
IK ⊗

√
N̂ΦPT

S

)
, (16)

Z̃ :=




diag(z̃1,1) · · · diag(z̃1,K)
...

. . .
...

diag(z̃L,1) · · · diag(z̃L,K)


 ∈ CLN̂×KN̂ .

We now design a block separable majorizer for the Hessian
matrix ΨTΨ ∈ RKD×KD of the cost function in (15). Ob-
serve that 1) RTR � λmaxIN with λmax = maxj=1,...,N Λj,j ,
where RTR = ΞTΛΞ, Ξ ∈ RN×N is a 2D discrete cosine
transform, and Λ is a diagonal matrix; and 2) ΦPT

BPBΦH �
IN̂ . Using these two bounds, ΨTΨ is bounded by

ΨTΨ � λmaxN̂ · (IK ⊗PS) QH
Ψ QΨ

(
IK ⊗PT

S

)
, (17)

where QH
Ψ QΨ ∈ CKN̂×KN̂ is a block matrix with submatrices

{[QH
Ψ QΨ]k,k′ ∈ CN̂×N̂ : k, k′ = 1, . . . ,K}:

[QH
Ψ QΨ]k,k′ := ΦH

L∑

l=1

diag(z̃∗l,k � z̃l,k′)Φ. (18)

Based on the bound (17), we design a diagonal majorization
matrix for ΨTΨ using the following Lemma.

Lemma 3.1 (Block diagonal majorization matrix MΨ). The
following block diagonal matrix with diagonal blocks, MΨ ∈
RKD×KD, satisfies MΨ � ΨTΨ:

MΨ = N̂λmax ·diag
(
(IK⊗PS) |QH

Ψ QΨ|
(
IK⊗PT

S

)
1KD

)
,

where QH
Ψ QΨ is defined in (18) and |A| denotes the matrix

consisting of the absolute values of the elements of A.

2) Proximal Mapping: Because our majorization matrix in
Lemma 3.1 is block diagonal, the proximal mapping problem
(15) simplifies to separate problems for each filter:

d
(i+1)
k = argmin

dk

1

2

∥∥∥dk−ν(i)
k

∥∥∥
2
[
M

(i)
Ψ

]
k,k

, s.t. ‖dk‖22≤1,

(19)

where ν(i) = d́(i)−
(
M

(i)
Ψ

)−1 (
Ψ(i)

)T (
Ψ(i)d́(i) − ỹ

)
, Ψ(i)

is defined in (16) with updated sparse codes {ẑ(i)
l : l =

1, . . . , L}, M
(i)
Ψ � (Ψ(i))TΨ(i) by Lemma 3.1, ỹ is a

concatenated vector with {ỹl}, and ν(i) is a concatenated
vector with {ν(i)

k ∈ RD : k = 1, . . . ,K} (d́(i) is constructed
similar to ν(i)). We apply accelerated Newton’s method to
efficiently solve (19) [5].

C. Sparse Code Update

1) Separable Majorizer Design: Given the current esti-
mates of the filters {d̃k =

√
N̂ΦPT

Sdk : k = 1, . . . ,K},
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the sparse code update problem for (5) is given by

min
{ẑl}

L∑

l=1

1

2
‖ỹl − Γẑl‖22 + α‖ẑl‖1, (20)

where ẑl = [ẑTl,1, . . . , ẑ
T
l,K ]T ∈ RKN̂ and

Γ := RPB

[
ΦHdiag(d̃1)Φ · · · ΦHdiag(d̃K)Φ

]
. (21)

We now seek a block separable majorizer for the Hessian
matrix ΓTΓ ∈ CKN̂×KN̂ of the quadratic term in (20).
Similar to (17), ΓTΓ is bounded by ΓTΓ � λmax ·QH

Γ QΓ,
where QH

Γ QΓ ∈ CKN̂×KN̂ is a block matrix with submatrices
{[QH

Γ QΓ]k,k′ ∈ CN̂×N̂ : k, k′ = 1, . . . ,K}:
[QH

Γ QΓ]k,k′ = ΦHdiag(d̃∗k � d̃k′)Φ. (22)

We design a diagonal majorization matrix for ΓTΓ as follows:

Lemma 3.2 (Block diagonal majorization matrix MΓ). The
following block diagonal matrix with diagonal blocks, MΓ ∈
RKN̂×KN̂ , satisfies MΓ � ΓTΓ:

MΓ = diag
(
|QH

Γ QΓ|1KN̂

)
,

where QH
Γ QΓ is defined in (22).

2) Proximal Mapping: The corresponding proximal map-
ping problem of (20) is separable for each training image:

ẑ
(i+1)
l = argmin

ẑl

1

2

∥∥∥ẑl − ζ(i)
l

∥∥∥
2

M
(i)
Γ

+ α‖ẑl‖1, (23)

where ζ(i)
l = ź

(i)
l −

(
M

(i)
Γ

)−1 (
Γ(i)

)T (
Γ(i)ź

(i)
l − ỹl

)
, Γ(i)

is defined in (21) with updated kernels {d(i)
k : k = 1, . . . ,K},

M
(i)
Γ � (Γ(i))TΓ(i) by Lemma 3.2, and ζ(i)

l is a concatenated
vector with {ζ(i)

l,k ∈ RN̂ : k = 1, . . . ,K}, for l = 1, . . . , L.
The solution to (23) is efficiently computed by soft-shrinkage
[5], [15]. Note that one needs not to use Γ(i) directly to
compute ζ(i)

l . If the filter size D is smaller than log N̂ , it
is more efficient to use (circular) convolutions.

IV. APPLICATION OF LEARNED FILTERS BY CDL-ACE TO
IMAGE DENOISING

To denoise a measured image b ∈ Rn corrupted by AWGN
(∼ N (0, σ2)), we use the filters {d?

k : k = 1, . . . ,K} learned
via (3) while solving the following optimization problem:

{{a?
k},ρ?} = argmin

{ak},ρ

1

2

∥∥∥∥∥b−
(

PB

K∑

k=1

d?
k ~ ak

)
− ρ

∥∥∥∥∥

2

2

+ α′
K∑

k=1

‖ak‖1 + β′‖Cρ‖22, (24)

and synthesize the denoised image by x? = PB

∑K
k=1 d?

k ~
a?
k + ρ?, where ρ? is constructed similar to (2). Using the

reformulation techniques in (3) and (5), we rewrite (24) as the
following convex problem:

â? = argmin
â∈RKn̂

1

2

∥∥∥b̃−A?â
∥∥∥

2

2
+ α′‖â‖1, (25)

where b̃ = Rb, A? = RPBD̂?, D̂?â =
∑K

k=1 d?
k ~ ak,

and â = [âT
1 , . . . , â

T
K ]T . We solve (25) through FPG using a

diagonal majorizer and adaptive restarting; see, for example,
[15, Fig. 2]. Note that (24) is the first image denoising model
based on CDL for non-contrast-enhanced noisy images.

V. NUMERICAL RESULTS AND DISCUSSION

A. Experimental Setup

Using FBPG-M (Algorithm 1) with adaptive restarting rule
(14)4 [5, reG-FBPG-M], we trained 100 and 200 filters with
the conventional CDL (i.e., (1) with {ρl = 0} and β = 0
[3], [5]) and the proposed CDL-ACE (1) for the city datasets
[1], [2]. For the conventional CDL, we trained filters with
preprocessed (intensity rescaling to [0, 1] and local contrast
enhancement [1]) and non-preprocessed datasets (note that
both the datasets contain zero-mean training images). For the
preprocessed and non-preprocessed datasets, we set α = 1
and α = 0.4, respectively. For CDL-ACE, we trained filters
with non-preprocessed datasets (note that even substracting
the mean is not required). We used the second-order finite
difference for C in (1) with β=25. The chosen regularization
parameters provide a good balance between sparsity and
data fitting terms. We terminated the iterations if either of
the following stopping criteria are met before reaching the
maximum number of iterations 3,000 [3]:

F (d(iter+1), ẑ(iter)),F (d(iter+1), ẑ(iter+1))≥F (d(iter), ẑ(iter))

or

∥∥d(iter+1)−d(iter)
∥∥

2∥∥d(iter+1)
∥∥

2

,

∥∥ẑ(iter+1)− ẑ(iter)
∥∥

2∥∥ẑ(iter+1)
∥∥

2

< tol, (26)

where (·)(iter+1) denotes the updated variable (·) after its iterth

update, and d and ẑ are concatenated vectors from {dk} and
{ẑl,k}, respectively. The tolerance value, tol, was set to 10−5.

For image denoising applications, we corrupted a test image
with strong AWGN, i.e., SNR = 5, 10 dB. We denoised
the noisy image through the following methods: 1) adaptive
Wiener filtering with 3×3 window size; 2) TV with MFISTA
using its regularization parameter 0.8σ and maximum number
of iterations 200 [16]; 3) the proposed image denoising model
(24) with 200 learned filters by the conventional CDL and
preprocessed training data, α′=2.5σ, the first-order finite dif-
ference for C in (24) [10], and β′=10σ; and 4) (24) with 200
learned filters by CDL-ACE (1), α′=α·5.5σ, and β′=β ·5.5σ
(i.e., scaled regularization parameters used in training). For
(24), the majorization matrix M � (A?)TA? is designed by
[5, Lem. 4.12]; and the stopping criteria is set similar to (26)
(with tol = 2.5×10−2, 10−3 for SNRdB = 5, 10, respectively)
before reaching the maximum number of iterations 100. We
tuned all the parameters in the introduced image denoising
methods to give the best PSNR values.

B. Convolutional Dictionary Learning with Adaptive Contrast
Enhancement

Fig. 2(b) shows that CDL-ACE successfully learns filters
with “Gabor-like” shapes that are not fully learned by the

4We selected the parameter ω in (14) as cos(95◦) [5].
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Noisy image TV CDL CDL-ACE

PSNR = 16.04 dB

PSNR = 16.04 dB

PSNR = 23.66 dB

PSNR = 23.66 dB

PSNR = 23.96 dB

PSNR = 23.96 dB

PSNR = 24.13 dB

PSNR = 24.13 dBFig. 1. Comparison of denoised images from different image denoising models (image is corrupted by AWGN with SNR = 10 dB). The proposed image
denoising model (24) using learned filters from CDL outperforms Wiener filtering and TV denoising. The learned filters by CDL-ACE further improves (24).

-0.406

0.576

(a) Conventional CDL with preprocessing [5]

-0.324

0.388

(b) Proposed CDL-ACE

-0.298

0.266

(c) Conventional CDL with no preprocessing [5]
Fig. 2. Examples of learned filters with different CDL models (100 filters).

TABLE I
PSNR VALUES (DB) OF DIFFERENT IMAGE DENOISING MODELS WITH

DIFFERENT SNRS IN NOISY IMAGES

SNR Noisy Wiener TV CDL CDL-
ACE

5 dB 11.04 17.81 21.28 21.43 21.68
10 dB 16.04 22.02 23.66 23.96 24.13

conventional CDL using non-preprocessed training datasets,
e.g., Fig. 2(c). More carefully designed transform C in (1)
is expected to better capture high-frequency components of
training datasets by more closely mimicking the nonlinear
contrast enhancement through R in (4).

C. Image Denoising with Learned Convolutional Dictionaries

The proposed image denoising model (24) using the learned
filters through CDL-ACE significantly improves PSNR over
Wiener filtering and TV image denoising; see Table I and
Fig. 1. In particular, the proposed CDL-ACE successfully
resolves the model mismatch between the training and testing
models—compare CDL and CDL-ACE in Table I and Fig. 1
—thereby improving the quality of denoised images in partic-
ular for stronger noise (i.e., SNRdB =5). Replacing `1 with a
nonconvex penality can avoid the bias of soft-shrinkage and
suppress the artifacts in uniform regions (e.g., sky).

VI. CONCLUSION

The proposed CDL-ACE is the first CDL model that bridges
the gap between CDL and its application to inverse problems,

by successfully modeling preprocessing and learning Gabor-
like shapes in filters. For strong AWGN, learned filters by
CDL-ACE further improves the proposed image denoising
model compared to those trained by the conventional CDL,
i.e., it improves PSNR by approximately 0.2 dB. Future
work will explore the effectiveness of learned filters from
CDL-ACE to image reconstruction problems with extremely
undersampled or noisy measurements.
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