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ABSTRACT

A major challenge in computed tomography (CT) is to reduce
X-ray dose to a low or even ultra-low level while maintain-
ing the high quality of reconstructed images. We propose a
new method for CT reconstruction that combines penalized
weighted-least squares reconstruction (PWLS) with regular-
ization based on a sparsifying transform (PWLS-ST) learned
from a dataset of numerous CT images. We adopt an alternat-
ing algorithm to optimize the PWLS-ST cost function that al-
ternates between a CT image update step and a sparse coding
step. We adopt a relaxed linearized augmented Lagrangian
method with ordered-subsets (relaxed OS-LALM) to accel-
erate the CT image update step by reducing the number of
forward and backward projections. Numerical experiments
on the XCAT phantom show that for low dose levels, the pro-
posed PWLS-ST method dramatically improves the quality of
reconstructed images compared to PWLS reconstruction with
a nonadaptive edge-preserving regularizer (PWLS-EP).

Index Terms— Low dose CT, Sparsifying transform
learning, Statistical image reconstruction, Sparse representa-
tion, Dictionary learning

1. INTRODUCTION

A major challenge in computed tomography (CT) is to re-
duce X-ray dose to a low or even ultra-low level while main-
taining the high quality of reconstructed images. Low dose
CT (LDCT) scans that still provide good image quality could
significantly improve the benefits of CT scans and open up
numerous entirely new clinical applications.

Currently, most commercial CT scanners use a technique
called filtered back-projection (FBP) for image reconstruc-
tion. FBP requires undesirably high doses of radiation to
produce high-quality diagnostic images. Model-based image
reconstruction (MBIR) methods, also known as statistical
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image reconstruction methods, produce high-quality and ac-
curate images, while reducing patient radiation exposure.
Weighted-least squares (WLS) estimation is commonly used
for CT [1]. WLS estimation with proper weighting that gives
less weight to measurements that are noisier and more weight
to the more reliable data reduces noise in the reconstructed
image. Penalized weighted-least squares (PWLS) reconstruc-
tion with added regularization based on prior knowledge of
the underlying unknown object improves image quality in
LDCT reconstruction [2]. Thus, MBIR with better image
priors is a promising way to develop improved reconstruction
methods for achieving high quality LDCT imaging.

Prior information extracted from big datasets of CT im-
ages could potentially enable dramatic improvements in im-
age reconstruction from LDCT measurements. It is well
known that natural signals are sparse in certain transform
domains, such as wavelets and discrete gradient domain. A
sparsifying transform (ST) converts signals into these do-
mains where they can be represented using a few non-zero
coefficients. Ravishankar and Bresler [3, 4] proposed a gener-
alized analysis dictionary learning method, called transform
learning, to efficiently find sparse representations of data. The
transform learning method avoids optimization of highly non-
convex or NP-hard cost functions involved in both synthesis
[5, 6] and previous analysis [7] dictionary learning methods,
and shows promising performance and speed-ups over the
popular synthesis K-SVD [6] algorithm in applications such
as image denoising.

Xu et al. [8] first applied dictionary learning to CT im-
age reconstruction by proposing a PWLS approach with reg-
ularization based on a redundant synthesis dictionary. Their
method uses a global dictionary trained from image patches
extracted from one normal-dose FBP image, or an adaptive
dictionary jointly estimated with the low-dose image. Pfis-
ter and Bresler [2, 9] proposed a model-based iterative re-
construction method with adaptive sparsifying transforms to
jointly estimate the ST and the image, showing the promise
of PWLS reconstruction with ST regularization. Existing CT
image reconstruction methods based on dictionary/transform
learning have two common downsides. Firstly, the dictionary
is often learned from a very small number of prior images or
from the current measurements themselves, which does not
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take advantage of the existing big databases of CT images ac-
quired from thousands of patients. Secondly, the prior images
are often from the same patient at regular dose. When such a
prior image is not available, these methods could not be used.

We propose a new method for low dose CT reconstruc-
tions that combines conventional PWLS reconstruction with
regularization based on a sparsifying transform (PWLS-ST)
learned from a dataset of numerous CT images. Numeri-
cal experiments on the XCAT phantom show that for low
dose levels, our method dramatically improves the quality
of reconstructed images compared to PWLS reconstruction
with an edge-preserving hyperbola regularizer (PWLS-EP).
We adopt a relaxed linearized augmented Lagrangian method
with ordered-subsets (relaxed OS-LALM) [10] to accelerate
the image reconstruction process.

2. PROBLEM FORMULATION

We solve the following optimization problem to recon-
struct an image x ∈ RNp from noisy sinogram data y ∈ RNd

using a pre-learned [4] ST matrix Ω ∈ Rl×l:

min
x∈C

1

2
‖y −Ax‖2W + R(x) (P0)

where the regularizer R based on the sparsifying transform Ω
is defined as:

R(x) , min
{zj}

β

N∑
j=1

{
‖ΩPjx− zj‖22 + γ2‖zj‖0

}
(1)

W = diag{wi} is the diagonal weighting matrix with el-
ements being the reciprocal of the variance, i.e., wi ≈
1/σ2(yi), A ∈ RNd×Np is the system matrix of a CT scan,
and C , {x|xj ≥ 0, 1 ≤ j ≤ Np}. N is the number of image
patches, the operator Pj ∈ Rl×Np extracts the jth patch of
l voxels of x as a vector Pjx, zj ∈ Rl denotes the sparse
representation of Pjx, β is a positive parameter to control
the noise and resolution trade-off, γ is a weight to control
sparsity in the model, and ‖ · ‖0 is the `0 “norm” that counts
the number of nonzero elements in a vector.

In (P0), the patches of the underlying image are assumed
to be approximately sparse in the learned transform Ω do-
main. We estimate both the image x and the sparse coeffi-
cients {zj} from LDCT data.

3. ALGORITHM

3.1. Sparsifying Transform (ST) Learning

We learn a sparsifying transform (ST) matrix Ω from the
patches extracted from a dataset of regular dose CT images,

i.e., we solve the following problem:

min
Ω,Z
‖ΩY − Z‖2F + λ

(
‖Ω‖2F − log |det Ω|

)
+

N ′∑
i=1

γ2‖Zi‖0

(P1)
where N ′ is the number of training patches, Z ∈ Rl×N ′

is
a matrix whose columns {Zi} are the sparse codes of the
corresponding training signals (vectorized patches) in Y ∈
Rl×N ′

, λ and γ are positive scalar parameters, and regular-
izer ‖Ω‖2F−log |det Ω| prevents trivial solutions and enables
control over the condition number of Ω.

3.2. Optimization algorithm

We propose an alternating algorithm to solve (P0) that al-
ternates between updating x (image update step) and {zj}
(sparse coding step) with other variables kept fixed.

3.2.1. Image Update Step

With {zj} fixed, (P0) reduces to the following weighted
least squares problem:

min
x∈C

{
1

2
‖y −Ax‖2W + β

N∑
j=1

‖ΩPjx− zj‖22
}

(2)

We solve this problem using the relaxed OS-LALM [10]
by iterating over the following update steps:

s(k+1) = ρ(DAx(k) − h(k)) + (1− ρ)g(k)

x(k+1) = [x(k) − (ρDA + DR)−1(s(k+1) +∇R(x(k)))]C

ζ(k+1) ,MA′mW(Amx(k+1) − y)

g(k+1) =
ρ

ρ+ 1
(αζ(k+1) + (1− α)g(k)) +

1

ρ+ 1
g(k)

h(k+1) = α(DAx(k+1) − ζ(k+1)) + (1− α)h(k)

(3)
where DA � A′WA is a diagonal majorizing matrix of
A′WA, e.g., DA , diag{|A|′|W||A|1} � A′WA [11],
[·]C is an operator that projects the input vector onto the
convex set C, M is the number of ordered subsets, Am is
the subset forward projection matrix, 1 ≤ α < 2 is the
(over-)relaxation parameter, and ρ > 0 is the AL penalty
parameter decreasing gradually as iterations progress [10],
i.e.,

ρn(α) =

{
1 , n = 0

π
α(n+1)

√
1−

(
π

2α(n+1)

)2
, otherwise.

(4)

The learned sparsifying transform Ω is a well-conditioned
square matrix [4]. DR � ∇2R(x) = 2β

∑N
j=1 P′jΩ

′ΩPj

is a diagonal majorizing matrix of the Hessian of the regular-
izer R(x), e.g.,

DR , 2β
N∑
j=1

P′jPjλmax(Ω′Ω) � ∇2R(x) (5)



The term
∑N
j=1 P′jPj ∈ CNp×Np is a diagonal matrix

with the diagonal entries corresponding to image pixel loca-
tions and their values being the number of patches overlap-
ping each pixel [12]. If we assume periodically positioned
overlapping image patches that wrap around at image bound-
aries, then the diagonal entries are equal, i.e.,

∑N
j=1 P′jPj =

κI (I ∈ CNp×Np ), where κ is a scalar. In particular, when
the overlap stride is 1, κ is equal to the image patch size l.
Therefore, DR simplifies to:

DR = 2βlλmax(Ω′Ω)I (6)

Since DR is independent of x and zj , we precompute it prior
to iterating.

3.2.2. Sparse Coding Step

With x fixed, we update {zj} by solving

min
{zj}

N∑
j=1

{
‖ΩPjx− zj‖22 + γ2‖zj‖0

}
(7)

The optimal sparse codes are given in closed form as ẑj =
Hγ(ΩPjx) ∀ j, i.e., setting the entries with magnitude less
than γ to zero. The hard-thresholding operator Hγ(·) is ap-
plied to each entry b in a vector as

Hγ(b) ,

{
0, |b| < γ

b, |b| ≥ γ.
(8)

Algorithm 1 describes the proposed optimization algo-
rithm for solving the PWLS-ST reconstruction problem (P0).

4. EXPERIMENTAL RESULTS

We evaluate the proposed PWLS-ST method and compare
its image reconstruction quality with those of conventional
FBP with a Hanning window, PWLS reconstruction with reg-
ularization based on DCT in (1) (PWLS-DCT), and PWLS
reconstruction with edge-preserving hyperbola regularization
(PWLS-EP). The PWLS-EP reconstruction is optimized us-
ing relaxed OS-LALM algorithm [10].

(a) DCT (b) γ = 125

Fig. 1: Rows of the sparsifying transform shown as 8 × 8
patches for (a) 2D DCT, and (b) learned Ω with γ = 125.

We pre-learned a ST matrix from 5 different slices of an
XCAT phantom [13] using (P1). We extracted 8 × 8 image

Algorithm 1 PWLS-ST Algorithm

Input: initial image x̃(0), α = 1.999 , ρ = 1,
DA = diag{|A|′|W||A|1}, DR = 2βlλmax(Ω′Ω)I.
Output: x̃(I) - reconstructed image.
for i = 0, 1, 2, · · · , I − 1 do

(1) Image Reconstruction: with {z̃(i)j } fixed,
Initialization: g(0) = MA′mW(Amx̃(i) − y),

ζ(0) = g(0), h(0) = DAx̃(i) − ζ(0), x(0) = x̃(i),
∇R(x(0)) = 2β

∑N
j=1

{
P′jΩ

′ΩPjx̃
(i) −P′jΩ

′z̃
(i)
j

}
.

for k = 0, 1, 2, · · · ,K − 1 do
for m = 0, 1, 2, · · · ,M − 1 do

s(k+1) = ρ(DAx(k) − h(k)) + (1− ρ)g(k)

x(k+1) = [x(k) − (ρDA + DR)−1(s(k+1) +∇R(x(k)))]C

ζ(k+1) ,MA′mW(Amx(k+1) − y)

g(k+1) =
ρ

ρ+ 1
(αζ(k+1) + (1− α)g(k)) +

1

ρ+ 1
g(k)

h(k+1) = α(DAx(k+1) − ζ(k+1)) + (1− α)h(k)

decrease ρ using (4) with n = kM +m.
end for

end for
x̃(i+1) = x(K)

(2) Sparse Coding: with x̃(i+1) fixed, the optimal
sparse codes are z̃

(i+1)
j = Hγ(ΩPjx̃

(i+1))∀ j.
end for

patches with overlapping stride of 1 from the five 512 × 512
XCAT slices. We ran 2000 iterations of the alternating mini-
mization algorithm proposed in [4] to make sure the learned
ST is completely converged with λ = 5.85 × 1015, and γ =
125. Figure 1 shows 2D DCT and the well-conditioned pre-
learned ST. Each row of these transforms is displayed as an
8× 8 patch.

We simulated a 2D fan-beam CT scan using a 1024×1024
XCAT phantom slice, which is different from the learning
slices, and ∆x = ∆y = 0.4883 mm. Noisy (Poisson noise)
sinograms of size 888×984 were numerically generated with
GE LightSpeed fan-beam geometry corresponding to a mo-
noenergetic source with 105, 104 and 103 incident photons per
ray and no scatter, respectively. We reconstructed a 512×512
image with a coarser grid, where ∆x = ∆y = 0.9766 mm.
The statistical weighting matrix W is defined as a diagonal
matrix with diagonal entries wi , exp(−yi).

We computed the root mean square error (RMSE) in
Hounsfield units (HU), which is defined for a reconstructed

CT image x̂ ∈ RNp as RMSE =

√∑Np

i=1(x̂i − x∗i )2/Np,
where x∗ is the ground truth image.

Initialized with FBP reconstructed images, the PWLS-EP
method converges quickly using relaxed OS-LALM with 20
subsets. For PWLS-DCT and the proposed PWLS-ST meth-
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Fig. 2: From top to bottom the incident photon intensities are 105, 104, and 103. (a) Reconstructions. (b) Difference images
(magnitudes) between PWLS-EP and PWLS-ST reconstructions and the ground truth image. All units in HU.

ods, we used the image obtained after a few iterations of the
PWLS-EP method as initialization to realize faster conver-
gence. We set γ as 25 to achieve a good trade-off between
reconstructed image quality and convergence speed. The pa-
rameter β was determined empirically by sweeping over a
large range of values and choosing the parameter that cor-
responded to the lowest RMSE, i.e., β was set as 3.75× 105,
1.10 × 105, and 5.00 × 104 for incident photon intensities
of 105, 104 and 103 respectively. In each iteration, we ran
3 inner iterations of the image update step with 4 subsets,
i.e., K = 3, M = 4 in Algorithm 1. For PWLS-EP, β
was set as 25.7, 27.3, and 29.3 respectively for the three in-
cident photon intensities, and the edge-preserving regularizer
is ϕ(t) , δ2

(√
1 + |t/δ|2 − 1

)
(δ = 10 HU).

Table 1: RMSE (HU) of reconstructions with FBP, PWLS-
EP, PWLS-DCT and PWLS-ST for three levels of incident
photon intensities.

Intensity FBP PWLS-EP PWLS-DCT PWLS-ST
105 34.7 10.5 19.5 13.3
104 69.5 24.6 29.3 23.0
103 202.3 49.1 53.1 46.7

Figure 2(a) shows the reconstructed images by FBP,
PWLS-EP, PWLS-DCT and PWLS-ST. When the incident
photon intensity is 105, although the PWLS-EP image has
lower RMSE than the PWLS-ST image, the latter has no vis-

ible noise. When the incident photon intensities are 104 and
103, compared with FBP and PWLS-EP, PWLS-ST greatly
improves image quality in terms of decreasing noise and re-
taining small structures. Figure 2(b) shows the difference
images (magnitudes) between the PWLS-EP and PWLS-ST
reconstructions and the ground truth image, for the three
incident photon intensities.

Table 1 summarizes the RMSE of reconstructions with
FBP, PWLS-EP, PWLS-DCT and PWLS-ST for three differ-
ent incident photon intensities. For low dose cases, PWLS-ST
further decreases the lowest RMSE achieved by PWLS-EP.

5. CONCLUSION

We present a PWLS-ST method that combines conven-
tional PWLS reconstruction with regularization based on a
sparsifying transform that is pre-learned from a dataset of
numerous CT images, to improve the quality of reconstructed
images in low dose CT imaging. Numerical experiments
show the proposed PWLS-ST method may help reduce X-ray
dose to a low level while still providing high quality image
reconstructions. For future work, we will investigate PWLS
with a union of sparsifying transforms [14] that could be pre-
learned in an online manner [15] from large datasets. We also
plan to compare our methods to the recent transform blind
reconstruction framework [2]. We will apply the proposed
PWLS-ST method to clinical CT data.
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