
Investigating Multi-threaded SIMD
for Helical CT Reconstruction on a CPU

Richard Sampson, Madison G. McGaffin, Thomas F. Wenisch, Jeffrey A. Fessler
Department of EECS, University of Michigan

Abstract—Iterative reconstruction for X-ray CT is compu-
tationally expensive, so it is desirable to examine acceleration
methods such as algorithm design, software implementation,
and computing hardware. This paper explores using single-
instruction, multiple data (SIMD) operations on modern CPUs
to accelerate projection and back-projection using the separable
footprint (SF) method. Slightly modifying the axial footprint
calculation facilitates SIMD implementation, providing up to
5× acceleration using 8-wide SIMD with Intel AVX2 instructions
over multi-threading (MT) alone. Due to memory bandwidth
constraints, overall speedup saturates at ≈55× faster than a
single-thread, non-SIMD version (still 2× faster over MT with 72
threads). Despite the bandwidth limits, the MT+SIMD runtimes
are competitive with corresponding GPU versions.

I. INTRODUCTION

Model-based iterative reconstruction (MBIR) for X-ray CT
has improved image quality and reduced X-ray dose com-
pared to filtered back-projection [1]. However, MBIR’s high
computational requirements have led researchers to explore
acceleration techniques to make it more practical for routine
clinical use. Efforts to reduce computational requirements and
speed convergence have shown great progress; nevertheless,
the computation requirement still remains undesirably high.

One method for mitigating the high complexity is exploiting
parallel computation. Previous work has achieved significant
acceleration by using parallelism both in distributed systems
in the cloud [2, 3] as well as locally on GPUs [4, 5]. However,
these techniques are tuned to specific hardware platforms and
can be difficult to adapt to new platforms. There has been
less study of the enhanced capabilities of modern CPUs that
support both higher thread counts and SIMD programming,
allowing for even more parallelism on a single chip [6, 7].
SIMD instruction set extensions (e.g., Intel’s AVX2) allow a
single instruction to perform element-wise operations (e.g., 8
single-precision floating-point values) concurrently. The main
challenge in exploiting SIMD lies in orchestrating memory
layout, as the instructions are efficient only when accessing
contiguous memory locations.

This work investigates using modern CPUs in MBIR for X-
ray CT, focusing on the increased parallel performance enabled
by the latest SIMD extensions. We describe reconstruction
algorithm modifications that facilitate SIMD programming
and examine the bandwidth limitations of combining SIMD
with multi-threading. We also explore the performance of

Supported in part by NIH grant U01 EB018753 and Intel equipment
donations. {rsamp | mcgaffin | fessler | twenisch} @umich.edu

high parallelism on modern CPUs with and without SIMD
in comparison to GPU-based reconstruction.

II. METHODS

Consider the following MBIR problem for X-ray CT [1]:

x̂ = argmin
x≥0

Ψ(x), Ψ(x) =
1
2
||Ax−y||2W +R(x) , (1)

with X-ray CT system matrix A ∈RM×N , noisy data y, diago-
nal matrix of statistical weights W and convex edge-preserving
regularizer R. The large dimension of x, the often nonquadratic
regularizer, the nonnegativity constraint, and the space-varying
nature of the Hessian of Ψ make (1) challenging.

This paper accelerates primal gradient-based methods,
e.g. [8, 9]. These methods perform an update of the form:

x(n+1) =

[
x(n)−

[
D(n)
]−1

g(n)
]

+

; (2)

where D(n) is a diagonal majorizer [8]; g(n) approximates
the gradient of Ψ in (1) at the current iterate, x(n); and [·]+
enforces the nonnegativity constraint. Iterative algorithms like
(2) that update all the voxels of x simultaneously can exploit
the increasing parallelism in modern computing hardware.

The gradient-approximating term g(n) is often computed
with an ordered-subsets (OS) approximation:

g(n) = ∇R
(

x(n)
)
+

Nview

|Sn| ∑
v∈Sn

Aᵀ
v Wv

(
Avx(n)−yv

)

≈ ∇R
(

x(n)
)
+AᵀW

(
Ax(n)−y

)
= ∇Ψ(xn), (3)

where Sn is a subset of the views in the CT system matrix [8].
The most time-consuming step in the image update (2) is

computing the data-fit part of the approximate gradient g(n) (3).
For example, for an 8-turn helical scan with 7,872 views and
12 subsets, each g(n) requires 656 single-view projections and
back-projections. These computations dominate the relatively
inexpensive regularizer gradient computation. Thus, we focus
on accelerating the projection and back-projection in (3).

A. Separable footprints CT system model

We consider the separable footprints (SF) CT system
model [10]. The SF model is a “splatting” approach that
implements the product Ax by superimposing the “footprints”
of each voxel: Ax = ∑N

j=1 a jx j. Each 2D footprint is (ap-

The 4th International Conference on Image Formation in X-Ray Computed Tomography

275

x y

z

(a) Multi-threaded

x y

z

(b) SIMD

Fig. 1: Data Structure Layout: Data varies fastest along vertical (z)
axis. Yellow blocks are data accessed in a single memory operation,
and red blocks are future accesses in the entire iteration of forward
or back projection loop. (a) Data layout and access of original multi-
threaded code. (b) SIMD layout and access. Data needed per access
spans across multiple columns, which would require expensive gather
operations. We eliminated strided accesses by adjusting the mapping
of image coordinates to memory addresses to densely pack each
cluster of values together in memory, resulting in sequential accesses.

proximated by) a separable product of two functions, and the
elements of a j use 2D integrals of this function:

ai j = riv j

(∫

s∈Si

gi j (s) ds
)(∫

t∈Ti

hi j (t) dt
)
, (4)

where ri and v j are ray and voxel weights, respectively. We use
a trapezoidal function gi j in the channel (transaxial) direction
and a rectangular function hi j in the row (axial) direction; this
corresponds to the “SF-TR” approximation detailed in [10].

Our implementation of the SF system model for projecting
into a single view v is represented mathematically as:

Av = RvSvTvVv, (5)

where Rv and Vv are diagonal matrices that apply weights
to each ray and voxel, respectively. The most computation-
ally expensive operations are the multiplications with the
separable matrices Sv and Tv that implement the s and t
integrals of (4), respectively. Conceptually, Tv ∈ RNt NxNy×N

and Sv ∈ RNsNt×Nt NxNy , although our implementation does not
store the intermediate NtNxNy-element vector. Our single-view
back-projection implementation follows the transpose of (5):
Aᵀ

v = VvTᵀ
v Sᵀ

v Rv.
The ray and voxel scaling operations Rv and Vv are trivial

to parallelize with SIMD, so we focus on the more difficult
channel and row operators. The next few sections describe
accelerating the projector; the back-projector is similar.

B. Existing implementation

We modify an existing projector that implements Avx as:

Avx = Rv ∑
xy

Sv,xyTv,xyVv,xyxxy. (6)

This is, the algorithm loops over each axial xy-column and
applies the volume weights for that column (Vv,xy), applies
the footprints along the axial t/z direction (Tv,xy), applies the
footprints along the transaxial s direction (Sv,xy), accumulating
into a buffer where it applies the ray weights Rv. Fig. 1(a)
illustrates this behavior: the algorithm serially processes each

Fig. 2: Central slices of the reconstructed XCAT phantom with the
conventional separable footprints system model. Images displayed on
a [800,1200] modified Hounsfeld unit scale where air is 0 HU.

Fig. 3: Difference along central slices between the two reconstructed
images, displayed on a [-20, 20] modified Hounsfeld unit window.

red-colored xy-column of x. We obtain parallelism across CPU
cores by processing different views on each core.

C. Modifying SF to suit SIMD

SIMD instructions require that an identical sequence of
element-wise operations be performed on the vector operands
of each instruction. A naive SIMD approach might process
multiple elements of xxy simultaneously. However, the axial
footprint operation Tv,xy is heterogeneous within each xy-
column, because the axial footprint of each successive voxel
intersects a varying number of detector cells in a cone-beam
CT geometry. Hence, a small loop with a trip count varying
in z is needed to calculate the contribution of each voxel to
each cell, thwarting SIMD efficiency.

To improve SIMD efficiency, we perform SIMD operations
over a rectangular region of eight adjacent columns (as in
Fig. 1(b)), projecting an xy-patch of 8 voxels with identical z.
Our intuition is that the axial footprints of neighboring voxels
in a small xy patch are all very similar, enabling an efficient
SIMD loop. Whereas the original SF method approximates the
axial footprint using the centers of the top and bottom faces
of each voxel, for our SIMD investigation we approximate
the axial footprint using the centers of the top and bottom
faces of each patch. Section III reports the impact of this
approximation.

The 4th International Conference on Image Formation in X-Ray Computed Tomography

276

Although this SIMD approach eliminates control flow di-
vergence, it creates a new challenge. The conventional image
volume memory layout for SF has z varying fastest, for which
each SIMD instruction would require voxel values that are
scattered in memory. Although supported by many SIMD
instruction sets, gather-type memory operations that can load
non-sequentially located data are highly inefficient. Instead,
we transform the memory layout to interleave the eight voxels
in each patch (shown in yellow in Fig. 1(b)) consecutively in
memory before advancing to the next z coordinate, allowing
a regular SIMD load operation to retrieve all eight values.

By applying our SIMD optimization to both forward and
back-projection, we change the coordinate-to-memory address
mapping throughout the CT code (i.e., there is no need
to reorganize image layout during execution). Regularization
requires gathers from disparate memory locations regardless
of the data layout; we simply adjust the memory address
calculations for the modified layout.

III. RESULTS

A. Effect of footprint approximation

We performed an XCAT [11] simulation to validate that the
axial footprint approximation that we introduced to facilitate
SIMD-friendly control flow does not cause the reconstructed
images to deviate significantly from those reconstructed using
the original SF system model (which itself is also based on
an approximation). Recall that for SIMD we approximate the
axial footprint of neighboring voxels in a 2-by-4 patch with the
axial footprint corresponding to the patch center. We compared
results from the SIMD reconstruction to reconstruction using
the original SF algorithm.

We reconstructed a 5123 simulated scan of an XCAT
phantom [11] using a detector with 888 channels, 64 rows
and 8 helix turns of 984 views each. The edge-preserving
regularizer R penalized the differences between each pixel and
its 26 3D neighbors using the Fair potential function,

ψ (d) = δ 2
(∣∣∣∣

d
δ

∣∣∣∣− log
(

1+
∣∣∣∣
d
δ

∣∣∣∣
))

, (7)

with δ = 10 HU. Fig. 2 shows orthogonal slices from a
converged solution to the MBIR problem (1).

Fig. 3 shows the difference maps between the two recon-
struction methods. The reconstructed images differ slightly
with 1.5 HU root mean squared difference. We believe this dif-
ference is comparable to other approximation errors incurred
by the SF system model and does not significantly degrade
the quality of the reconstruction.

B. SIMD acceleration

We evaluated the acceleration provided by both multi-
threading (MT) and by SIMD over a single-thread, non-SIMD
implementation on a dual-socket Xeon 2699 system with
a total of 72 logical CPU cores (36 physical). Our results
compare average runtimes of computing forward and back
projections for 572 views with a 528×496×768-voxel volume
with the same detector geometry. We averaged 25 runs each,
varying the CPU thread count from 1 to 72. For SIMD we

0

10

20

30

40

50

60

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

Sp
ee

du
p

Ve
rs

us
 S

er
ia

l

Thread Count

MT+SIMD
MT+AUTO
MT
Serial

Fig. 4: Average speedup over single-thread, non-SIMD:
Speedup of data-fit gradient computation for our multi-threaded
SIMD (MT+SIMD) version, an auto-vectorized multi-threaded
(MT+AUTO) version, and conventional non-SIMD multi-threaded
(MT) version, versus a single-threaded, non-SIMD version (Serial).
Times averaged over 25 runs.

0

20

40

60

80

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

Ba
nd

w
id

th
 (G

B/
s)

Thread Count

MT+SIMD (Full)
MT+SIMD (Half)
Measured Peak

Fig. 5: Average Memory Bandwidth Consumption: Calculated
bandwidth consumption for the Tᵀ

v operation in back-projection with
multithreaded SIMD for 1-72 threads, each averaged over 25 runs,
compared with measured peak bandwidth of the system. “Full”
denotes 32-bit single-precision data, and “Half” is emulated 16-
bit precision by reading/writing half of the data. Peak bandwidth
measured using STREAM triad benchmark[12] with 72 threads.

used 8-element AVX2 floating point operations as described
in Section II.

Fig. 4 shows that our SIMD implementation (MT+SIMD)
provides significant additional speedup over the multi-threaded
baseline (MT), achieving over 5× speedup for lower thread
counts. We also include the speedup achieved by automatic
SIMD vectorization of the MT baseline using Intel’s icc
compiler (MT+AUTO), which provides minimal gains as it
cannot perform the proposed algorithmic modifications and
layout transformations. However, the results also show that
the MT+SIMD performance saturates at roughly 25 threads,
limiting any further speedup beyond 50-55x over the non-
parallelized reconstruction. Nevertheless, MT+SIMD provides
at least 2x speedup over the MT baseline for all thread counts.

C. Memory Bandwidth

The MT+SIMD performance saturates around 25 threads
because it exhausts the available memory bandwidth in the
Xeon 2699. Various phases of the CT reconstruction algorithm
are memory intensive, and the concurrent accesses from many
threads overwhelm the capability of the memory subsystem.

The 4th International Conference on Image Formation in X-Ray Computed Tomography

277

0
2
4
6
8

10
12
14
16
18

Tesla C2050
(GPU)

GTX 480
(GPU)

Kepler
K5200 (GPU)

Xeon 2699
(CPU)

Xeon 2699 +
SIMD (CPU)

Ru
nt

im
e

(s
ec

on
ds

)

Forward Projection

Back Projection

Fig. 6: Subset Gradient Runtime Comparison: Comparison of
forward and back-projection runtimes (572 views) on various GPU
generations and on the dual-socket Xeon 2699. Xeon MT and
MT+SIMD reconstructions use all 72 logical cores. SIMD imple-
mentation uses 8-wide floating-point AVX2 instructions.

In particular, we found that the Tᵀ
v step of the back-projection,

which performs an N-voxel read-modify-write operation, sat-
urates available memory bandwidth with roughly 20 threads.

Fig. 5 illustrates average memory bandwidth consumption
versus thread count. We estimated average memory bandwidth
by precisely measuring the runtime of the Tᵀ

v step in each
thread individually across 25 runs, then averaging across
threads and runs. We then divide the total data read and
written in each phase by the average runtime. The black
line (Measured Peak) indicates the hardware’s peak sustain-
able memory bandwidth, measured with the STREAM triad
benchmark [12]. The average bandwidth consumption of our
approach (MT+SIMD Full) matches the measured peak around
20 threads, and more threads do not improve performance.

Our bandwidth measurements imply that our multi-threaded
SIMD aglorithm allows compute performance to greatly out-
strip memory system performance on the Xeon 2699. Higher
speedups could be obtained by using hardware with more
memory bandwidth (e.g., more DD4 memory channels or
higher-bandwidth GDDR5 memory), or the same performance
could be achieved at lower cost with a Xeon server with fewer
cores. Alternatively, memory bandwidth can be reduced by
storing the image more compactly in a half-precision format,
still yielding acceptable reconstruction quality [13]. Fig. 5
(MT+SIMD Half) illustrates memory bandwidth scaling when
we emulate half-precision format. Bandwidth of the Tᵀ

v step
again saturates at the measured bandwidth peak, but with 40
threads instead of 20.

D. CPU vs GPU Comparison

Finally, we compare our MT+SIMD performance to prior
SF results achieved with GPUs [5, 14]. Fig. 6 contrasts SF
forward and back-projection on three GPU generations and
our 72-thread MT and MT+SIMD performance on the Xeon
2699. The Xeon’s high thread count allows the MT and
MT+SIMD implementations to be faster than even the high-
end K5200 GPU. The comparison also reveals the disparity
in forward and back-projection runtimes for MT+SIMD that
arise because back-projection incurs more memory traffic
and saturates available bandwidth at a lower thread count.

Future research should focus on memory bandwidth reduction
(e.g., via half-precision formats) to fully realize the remaining
untapped speedup potential of SIMD.

IV. SUMMARY AND CONCLUSIONS

While iterative X-ray CT reconstruction provides excellent
image quality, it still remains computationally expensive. Most
prior work has focused on GPU and distributed computing to
overcome this cost. This work examined the high thread count
and SIMD support of modern CPUs. Our results show that
with slight changes to the data mapping and a small approx-
imation of the axial footprint, multi-threaded SIMD provides
up to 55× speedup over a non-parallel implementation. We
also showed that SIMD can provide up to 5× improvement
over multi-threading alone, especially for lower thread counts;
however, this improvement becomes limited by the memory
bandwidth due to such high parallelism. Despite the bandwidth
restrictions, multi-threaded SIMD performance was as good
or better than a high-end GPU solution, so future work on
overcoming the bandwidth limitations could provide even
further improvement.

REFERENCES
[1] J-B. Thibault, K. Sauer, C. Bouman, and J. Hsieh. A three-dimensional

statistical approach to improved image quality for multi-slice helical CT.
Med. Phys., 34(11):4526–44, November 2007.

[2] J. M. Rosen, J. Wu, T. F. Wenisch, and J. A. Fessler. Iterative helical CT
reconstruction in the cloud for ten dollars in five minutes. In Proc. Intl.
Mtg. on Fully 3D Image Recon. in Rad. and Nuc. Med, pages 241–4,
2013.

[3] D. Kim and J. A. Fessler. Distributed block-separable ordered subsets
for helical X-ray CT image reconstruction. In Proc. Intl. Mtg. on Fully
3D Image Recon. in Rad. and Nuc. Med, pages 138–41, 2015.

[4] M. Kachelrieß, M. Knaup, and O. Bockenbach. Hyperfast parallel-beam
and cone-beam backprojection using the cell general purpose hardware.
Med. Phys., 34(4):1474–86, April 2007.

[5] M. McGaffin and J. A. Fessler. Alternating dual updates algorithm
for X-ray CT reconstruction on the GPU. IEEE Trans. Computational
Imaging, 1(3):186–99, September 2015.

[6] H. Scherl, M. Kowarschik, H. G. Hofmann, B. Keck, and J. Hornegger.
Evaluation of state-of-the-art hardware architectures for fast cone-beam
CT reconstruction. Parallel Computing, 38(3):111–24, March 2012.

[7] J. Treibig, G. Hager, H. G. Hofmann, J. Hornegger, and G. Wellein.
Pushing the limits for medical image reconstruction on recent standard
multicore processors. Int. J. High Perf. Comp. Appl., 27(2):162–77, May
2013.

[8] H. Erdoğan and J. A. Fessler. Ordered subsets algorithms for transmis-
sion tomography. Phys. Med. Biol., 44(11):2835–51, November 1999.

[9] D. Kim, S. Ramani, and J. A. Fessler. Combining ordered subsets and
momentum for accelerated X-ray CT image reconstruction. IEEE Trans.
Med. Imag., 34(1):167–78, January 2015.

[10] Y. Long, J. A. Fessler, and J. M. Balter. 3D forward and back-projection
for X-ray CT using separable footprints. IEEE Trans. Med. Imag.,
29(11):1839–50, November 2010.

[11] W. P. Segars, M. Mahesh, T. J. Beck, E. C. Frey, and B. M. W. Tsui.
Realistic CT simulation using the 4D XCAT phantom. Med. Phys.,
35(8):3800–8, August 2008.

[12] J. D. McCalpin. Memory bandwidth and machine balance in current
high performance computers. IEEE Comp. Soc. Tech. Comm. on Comp.
Arch. (TCCA) Newsletter, pages 19–25, December 1995.

[13] C. Maaß, M. Baer, and M. Kachelrieß. CT image reconstruction with
half precision floating-point values. Med. Phys., 38(s1):S95–105, 2011.

[14] M. Wu and J. A. Fessler. GPU acceleration of 3D forward and backward
projection using separable footprints for X-ray CT image reconstruction.
In Proc. Intl. Mtg. on Fully 3D Image Recon. in Rad. and Nuc. Med,
pages 56–9, 2011.

The 4th International Conference on Image Formation in X-Ray Computed Tomography

278

