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Abstract—This paper describes a new distributed algorithm for
accelerating model-based image reconstruction in X-ray CT using
iterated coordinate descent (ICD). The key novel component is a
majorizer whose Hessian involves a block-diagonal matrix with
triangular blocks (BDTriB). The resulting majorize-minimize
algorithm combines aspects of ICD and the distributed block-
separable surrogates (DBSS) algorithm for CT reconstruction [1].
Unlike traditional ICD, the proposed algorithm is also amenable
to acceleration using Nesterov’s momentum [2] and the optimized
gradient method (OGM) [3]. A simple preliminary experiment
indicates potential for significant acceleration over traditional
ICD and promising performance for distributed computing.

I. INTRODUCTION

Model-based image reconstruction (MBIR) in X-ray CT
may improve image quality over direct reconstruction methods
like filtered backprojection, but long reconstruction times
impede widespread clinical use. Accelerating model-based re-
constructions involves improving the mathematical structure of
the numerical optimization algorithms [3], [4] and exploiting
both modern hardware [5], [6] and distributed computing [1],
[7]. This paper describes a parallelizable version of ICD.

Consider the following penalized weighted least-squares
(PWLS) image reconstruction problem [8]:

x̂ = argmin
x≥0

Ψ(x), Ψ(x) = L(Ax) + R(Cx), (1)

with CT system matrix A ∈ RM×N , finite differences matrix
C ∈ RK×N , and data-fit and regularizer terms L and R:

L(p) =
M∑

i=1

wi

2
(pi − yi)

2
, R(d) =

K∑

k=1

βkψ(dk), (2)

with nonnegative statistical weights {wi} and regularization
parameters {βk}, where {yi} denotes the measured sinogram
(log) data. We assume the convex potential function ψ is
smooth with bounded curvature.

Suppose that we have B compute nodes that communicate
via some interconnect; e.g., multiple GPUs or processors on
a single computer or multiple computers connected by a
network. Data communication over this interconnect typically
is slower than communication and computation within each
node. Accordingly, we solve (1) by finding a majorizer con-
sisting of a sum of B components that we minimize in parallel
and then communicate the results to update the image x.
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II. METHODS

The proposed method combines the distributed block-
separable surrogate (DBSS) [1] in a majorize-minimize (MM)
framework [9] using a form of ICD for the inner minimizations
and momentum for acceleration [2], [3].

A. Distributed block-separable surrogates

We start with a majorizer based on the distributed block-
separable surrogate (DBSS) [1]. We partition the image x
into B blocks, {xb}, i.e., x = (x1, . . . ,xB), typically by
axial slabs. The corresponding components of the CT system
matrix A and the finite differencing matrix C are {Ab} and
{Cb}, respectively, where, e.g., A = [A1, . . . ,AB ] and Ab is
the submatrix of A having columns correspond to the pixels
in xb. During each outer iteration, each computational node
updates one of these sub-images, after which the sub-images
are communicated between blocks.

In each outer iteration n, we form a block separable
surrogate Φ(n) as follows:

Φ(n)(x)� 1

2

∣∣∣
∣∣∣x− x(n)

∣∣∣
∣∣∣
2

M
+
(
x− x(n)

)′
∇Ψ
(
x(n)

)

+Ψ
(
x(n)

)
, (3)

where the iteration-invariant, block-diagonal, N×N matrix M
majorizes the Hessian of the cost function, i.e., M � ∇2Ψ.
This is a tangent majorizer [9], i.e., it satisfies

Φ(n)
(
x(n)

)
= Ψ

(
x(n)

)
,

Φ(n)(x) ≥ Ψ(x) ∀x ≥ 0. (4)

Therefore, any x(n+1) that descends the surrogate Φ(n) will
also descend the original cost function Ψ. For the MBIR
problem (1), this property ensures convergence to x̂ [9].

The DBSS [1] has the block-diagonal Hessian
MDBSS � diag{MDBSS,b}, where

MDBSS,b �A′
bΛbWAb +C ′

bKbBCb,

W = diag
i
{wi}, B = diag

k

{
βk ·max

d
ψ′′(d)

}
, (5)

where Λb and Kb are determined by the partition of x:

Λb � diag
i

{
[A1]i
[Ab1]i

}
, Kb � diag

k

{
[|C|1]k
[|Cb|1]k

}
, (6)
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where |C| denotes the element-wise absolute value of C.
This majorizer is block-separable, i.e., it decomposes into B
independent functions over different groups of pixels {xb}:

Φ
(n)
DBSS(x) =

B∑

b=1

Φ
(n)
DBSS,b(xb), (7)

The DBSS algorithm descends each block surrogate Φ
(n)
DBSS,b

using ordered subsets with momentum acceleration (OS-
MOM) [1], [3].

B. Distributed iterated coordinate descent

The DBSS algorithm does not exactly minimize each block-
separable surrogate Φ

(n)
DBSS,b because that would require too

many inner iterations of OS-MOM to be practical. Although
merely descending each surrogate is sufficient to ensure
convergence, mere descent precludes using momentum-based
techniques to accelerate the outer iterations.

To design a majorizer for which ICD can perform exact min-
imization, we propose to further majorize the block-separable
matrix MDBSS with a block-diagonal matrix having (lower)
triangular blocks (BDTriB): D + T . We invert each of the
triangular blocks of the BDTriB matrix exactly simply using
back-substitution, i.e., one sweep of ICD. By a proof similar
to the one in [3], this design allows us to accelerate the outer
iterations using momentum.

For derivation (but not implementation), define the N ×N
block diagonal matrix T = diag{Tb} where each block Tb is
lower-triangular and defined as follows:

[Tb]ij =

{
[A′

bWAb +C ′
bBCb]ij , i ≥ j

0, else.
(8)

This definition retains the block structure of MDBSS. We
choose the diagonal matrix D such that for all z ∈ RN , the
following majorization condition holds:

z′(D + T )z = z′
(
D +

1

2
(T + T ′)

)
z ≥ z′MDBSSz. (9)

In particular, in each block we design diagonal Db such that:

z′
b

(
Db +

1

2
(Tb + T ′

b)

)
zb ≥ z′

bMDBSS,bzb. (10)

Expanding the definition of T (8), we design Db such that:

Db �MDBSS,b −
1

2
(Tb + T ′

b)

= A′
bΛbWAb +C ′

bKbBCb (11)

− 1

2
(A′

bWAb +C ′
bBCb +Gb)

= A′
bW

(
Λb −

1

2
I

)
Ab +C ′

bB

(
Kb −

1

2
I

)
Cb −

1

2
Gb,

(12)

where Gb contains the diagonal of A′
bWAb +C ′

bBCb. The
entries of Λb and Kb (6) are greater than or equal to unity if

nonzero. We majorize the nondiagonal terms in (12) with the
following “SQS-like” majorizer [10]:

DSQS,b � diag
{(

A′
bW

(
Λb −

1

2
I

)
Ab

+|Cb|′B
(
Kb −

1

2
I

)
|Cb|
)
1

}
. (13)

Thus, our final diagonal component for the bth block is

Db �DSQS,b −
1

2
Gb, (14)

which one can verify is nonnegative. Computing this majorizer
requires no more time than computing the diagonal majorizer
for the SQS-MOM inner step of the DBSS algorithm. In
other applications, e.g., phase-contrast CT, the gram matrix
A′ΛbA may have negative entries. In these cases, the SQS
majorizer (13) may be very loose or difficult to compute, and
one can use another technique to find a diagonal majorizer,
e.g., the memory-efficient algorithm in [11].

C. Minimizing the new surrogate

The new surrogate for the bth block is

Φ
(n)
b (xb) =

1

2

∣∣∣
∣∣∣xb − x

(n)
b

∣∣∣
∣∣∣
2

Db+Tb

+ x′
b∇xb

Ψ
(
x(n)

)
. (15)

The matrix Db + Tb couples the entries of xb together, but
because it is lower triangular, we minimize Φ

(n)
b exactly using

back substitution with a nonnegativity constraint. That is, we
loop though each pixel xj of xb in a predetermined order and
for each pixel solve the 1D minimization problem

x
(n+1)
j = argmin

xj≥0

ωj

2

(
xj − x

(n)
j

)2
+ xjgj ,

= max
(
x
(n)
j − 1

ωj
gj , 0

)
, (16)

where

ωj �[D]jj + a′
jWaj + c′jBcj ,

gj �
[
∇R
(
x(n)

)]
j
+ a′

jW
(
r(n) + rb

)

+ c′jBCb

(
x
(n+)
b − x

(n)
b

)
,

r(n) �Ax(n) − y, rb �Ab

(
x
(n+)
b − x

(n)
b

)
, (17)

and aj and cj denote the jth columns of A and C, respec-
tively. The vector x

(n+)
b contains the state of xb after the all

the pixels before the jth pixel have been updated. Updating
the jth pixel involves:

• computing the column vectors aj and cj ;
• computing ωj and gj , which involves finite differences

(for the second term of gj) and inner products;
• solving the one-pixel update problem (16);
• and finally updating the residual buffer

rb ← rb + aj

(
x
(n+1)
j − x

(n)
j

)
. (18)

These are the same steps as ICD [12] applied to (7) with the
minor addition of the “relaxation” [D]jj in ωj .

The 4th International Conference on Image Formation in X-Ray Computed Tomography

538



TABLE I
MOMENTUM-ACCELERATED DISTRIBUTED ICD ALGORITHMS

1) Distribute
{
x
(0)
b

}
to the B computational nodes, initialize z(0) =

x(0). Compute r(0) = Ax(0) − y and {Db} (14). Set t(0) = 1.
2) Loop outer iteration n = 1, . . . , Niter:

a) t(n+1) = 1
2

(
1 +

√
1 + 4

(
t(n)

)2
)

b) In parallel for b = 1, . . . , B:
i) Minimize block surrogate (15) using ICD to compute

x
(n+1)
b .

ii) Momentum update:

No momentum : z(n+1)
b = x

(n+1)
b ,

FGM : z(n+1)
b = x

(n+1)
b + t(n)−1

t(n+1)

(
x
(n+1)
b − x

(n)
b

)

OGM : z(n+1)
b = x

(n+1)
b + t(n)−1

t(n+1)

(
x
(n+1)
b − x

(n)
b

)

+ t(n)

t(n+1)

(
x
(n+1)
b − z

(n)
b

)

c) Broadcast node residuals {rb} to compute r(n+1) and edge
slices of x(n+1)

b .

3) Output: z(Niter).

Between outer iterations, we synchronize the regularizer
gradient ∇R

(
x(n)

)
and residual r(n) = Ax(n) − y between

computational nodes. The latter needs no additional projec-
tions or backprojections because

r(n+1) − r(n) =

B∑

b=1

rb, (19)

so each node needs only to communicate residual updates {rb}
and edge voxels to compute ∇xb

R
(
x(n)

)
.

D. Momentum-based acceleration

In each outer iteration, the proposed algorithm forms and
exactly minimizes a block-separable quadratic surrogate for
the original cost function. This places the proposed algorithm
in the same category as iterative shrinkage and thresholding
(ISTA) and momentum-accelerated SQS algorithms. Thus, the
distributed ICD algorithm can be improved with momentum-
based acceleration e.g., Nesterov’s fast gradient methods
(FGM) [2] or the optimized gradient method (OGM) [13].
Table I summarizes these algorithms.

Traditional ICD methods are not in general amenable to
momentum-based acceleration [14]. For example, simply run-
ning ICD on the block-separable surrogate Φ

(n)
DBSS in (7) is

equivalent to the proposed algorithm with each Db = 0.
Although this basic approach descends the surrogate Φ(n) and
converges, it is incompatible with momentum-based acceler-
ation; applying momentum-based acceleration to this basic
combination of DBSS with ICD may cause divergence. The
additional under-relaxation provided by Db (14) allows us
to use ICD for exact minimization of a quadratic majorizer,
making the algorithm compatible with momentum-based ac-
celeration. This property is the key contribution of this work.

III. PRELIMINARY EXPERIMENT

To illustrate the concept, we simplified the CT reconstruc-
tion problem (1) to a one-dimensional 512-“pixel” problem.

We formed the system matrix A using a Toeplitz matrix
with point spread function 1

r1/2
so the Gram matrix A′A

has response proportional to 1
r [15]. The data-fit weights

were uniform wi = 1, and regularizer weights βk were also
uniform. We used a quadratic regularizer potential function
ψ(d) = 1

2d
2. This is an extreme simplification of the CT

reconstruction problem for a preliminary investigation.

A. Single-node relaxation and acceleration

We compared 6 methods for B = 1: conventional ICD and
ICD with the proposed relaxation (RICD), with and without
FGM [2] ((R)ICD+FGM), or OGM [13] ((R)ICD+OGM). In
this “one-node” setting, Λ = W = I in (6) and (1).

Fig. 2(a) plots the cost function per iteration for all 6
algorithms. Clearly, applying momentum to basic ICD without
additional relaxation is infeasible.

The additional relaxation from the diagonal matrices
{Db} (14) slows the convergence of RICD compared to ICD.
However, because every loop through all the pixels in RICD
corresponds to minimizing a quadratic surrogate, we can apply
momentum. With momentum acceleration, RICD converges
faster than regular ICD. Furthermore RICD+FGM is provably
convergent.

B. Distributed accelerated ICD

We also implemented the proposed distributed ICD algo-
rithms on a simulated network of 2, 4 and 8 nodes. As
the number of nodes B in the network increases, the block-
separable majorizer becomes looser; Fig. 1(d) shows this effect
in the increasing entries of the diagonal majorizer D.

Fig. 2(b) shows the value of the cost function vs. iteration
for normal ICD and RICD+OGM for 1, 2, 4, and 8 nodes.
The ICD algorithms use the block-separable surrogate [1],
and RICD-OGM uses the proposed BDTriB majorizer. As B
increases, the larger majorizer values {Db} slow convergence
on a per-iteration basis. However the increase of the majorizer
values as the number of nodes doubles is less than a factor
of 2, so there is opportunity to accelerate the algorithm with
distributed computing provided the communication overhead
is not too high.

We simulated the time behavior of the distributed algorithms
by

Δtiter =

{
1, B = 1

αoverheadB + 1
B , B > 1.

(20)

Each node beyond the first (B > 1) adds some overhead due to
communication and synchronization, αoverhead, but reduces how
long it takes to compute the parallelizable workload, 1

B . In this
experiment, we assumed αoverhead = 0.05. This is a pessimistic
estimate; in other experiments with non-ICD algorithms, we
found αoverhead ≈ 0.01 for multiple GPUs connected to the
same computer or αoverhead ≈ 0.03 for computers connected
by Ethernet.

Fig. 2(c) plots the value of the cost function vs. estimate
time for the distributed (R)ICD algorithms. The distributed
ICD algorithms reach peak performance at only two nodes, and
is still slower than RICD on one node. The RICD algorithm
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(a) Full N ×N Hessian of Ψ (b) DBSS Hessian, B = 4 (c) T for Proposed BDTriB (d) Diagonal of Relaxation D

Fig. 1. Full Hessian of Ψ, Hessian of block-separable majorizer for B = 4, and T and D for BDTriB majorizer for the simplified reconstruction problem
in Section III.

(a) Accelerated ICD (b) Cost Ψ vs. Iteration for various B (c) Cost Ψ vs. Estimated Time

Fig. 2. Cost function curves for the experiment in Section III.

can exploit further parallelism, and convges most quickly
on four nodes; the overhead from the eight-node configu-
ration slows overall convergence. Although this preliminary
experiment suggests only modest parallelization is useful, our
selection for αoverhead is pessimistic and the time-characteristics
of a real distributed system are difficult to estimate a priori.

IV. SUMMARY

We explored accelerating ICD using momentum and dis-
tributed computing. With additional relaxation based on matrix
majorization, we can combine ICD [3] with the momentum
methods that have been effective in accelerating ordered-
subsets methods. A proof-of-concept experiment suggests that
this approach can accelerate ICD. The proposed method
also shows promising accelerations via distributed comput-
ing, by combining momentum-based acceleration with block-
separable surrogates [1]. The voxels on the boundary between
blocks might converge slower than others; this effect could be
mitigated by dithering the block boundaries [1].

The sequential nature of ICD algorithms seems not well
matched to computing hardware that becomes increasingly
parallel. Nevertheless, the general techniques for accelerating
and distributing ICD described here are also relevant to
accelerating dual coordinate ascent algorithms for CT, e.g.,
[5], that are amenable to implementation on modern hardware.
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