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Fast Variance Prediction for Iteratively
Reconstructed CT with Arbitrary Geometries

Stephen M. Schmitt and Jeffrey A. Fessler

Abstract—Fast variance prediction for iteratively recon-
structed CT images is useful for the analysis of reconstruction
algorithms and potentially for automatic tube current mod-
ulation. Prior methods are either computationally intractable
or require impractical computation times to produce a map
of the reconstructed image variance. In this paper we present
the extension of prior work for fast variance prediction, which
was specific to limited classes of CT geometries, to arbitrary
CT geometries. We compare the results of our method to an
empirical variance map produced from repeated axial CT scans
of a chest phantom.

I. INTRODUCTION

Iterative reconstruction methods for CT offer improved
resolution and noise properties compared to FBP-like re-
construction methods [1]. However, the statistical proper-
ties of iteratively reconstructed images are more difficult to
analyze than those of FBP-like images.

Prior work has provided closed form but computationally
intractable expressions for the covariance of an iteratively
reconstructed CT image [2]. Other work has made evalu-
ating this closed form more tractable by using frequency-
domain approximations [3]. These methods require com-
puting a projection and back-projection of each voxel of
interest and are impractical for producing a map of the
variance for an entire 3D volume.

In this paper, we apply further approximations to the
frequency-domain approximation that significantly acceler-
ate these methods, allowing us to produce a variance map
in less time than methods that require a projection and
back-projection. We compare the resulting prediction to an
empirical variance map produced from repeated CT scans
of the same object.

II. METHODS

A. Problem Domain

In this work, we consider statistically reconstructed im-
ages of the form

x̂ = argminx L(Y;x)+αR(x) (1)

Here, L is the negative log-likelihood of the vectorized
observations Y given an image vector x. The function R(x)
is a regularization penalty. We assume:

1) The covariance of Y is diagonal, and can be estimated
from the data and knowledge of the instrumentation.
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2) Given an image x, the elements of Y are statistically
independent, and the likelihood of a particular ob-
servation Yi is modeled in terms of the projection
[Ax]i ,

∑
j ai j x j , such that

L(Y;x) =
Nd∑

i=1
Li (Yi ; [Ax]i ); (2)

the matrix A is a projection matrix with elements ai j

representing the projection of voxel j onto observa-
tion i . We denote the number of observations Nd .

3) The regularizer takes the general form

R(x) =
NC∑

d=1
rd

∑

k
ψ([Cd x]k ). (3)

In the common case of a regularizer that penal-
izes first differences between neighboring voxels, d
indexes the directions over which we take the dif-
ferences, Cd is a first differencing matrix between
voxels in that direction, and rd is the relative strength
of the regularizer in that direction. We assume the
regularizer penalty ψ is twice-differentiable at 0, and
scaled such that ψ′′(0) = 1.

4) Let x̆ denote the reconstruction using noise-free data
Ȳ. We assume that the Hessian of the regularizer,
evaluated at x̆, can be approximated by P:

∇2R(x̆) ≈ P,
NC∑

d=1
rd CT

d Cd . (4)

This approximation is accurate except near edges.

B. Methods

Previous work has computed variance predictions using
local frequency domain expressions for ATWA, where W is
a diagonal statistical weighting matrix, and for P, using an
approximation of local shift-invariance.

The local impulse response (LIR) of ATWA for the voxel
j is defined by

hW
j ,ATWAe j , (5)

where e j is defined as the unit vector with a single 1 at
position j . This LIR can be written exactly as the impulse
e j operated on by a local frequency-domain filter HW

j (~ν):

hW
j =F∗D

{
HW

j

}
Fe j , (6)

where D is a “diagonalization” operator: (D {H } X ) (~ν) =
H(~ν)X (~ν), and F is the DSFT with the spatial extent
limited by the image support. We refer to HW

j as a local

frequency response (LFR). In the region near voxel j , ATWA
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is typically approximately spatially shift-invariant, leading
to an approximation

[ATWA]k j ≈ eT
kF∗D

{
HW

j

}
Fe j , (7)

for voxel k near voxel j , which is suggested by (5) and (6).
Except at the edges of the reconstructed image, P can be
represented in terms of its frequency response R(~ν):

P =F∗D {R}F . (8)

In [4], we develop a separable approximation to HW
j :

HW
j (~ν) ≈ J (~ν)EW

j (~Θ), (9)

where ~Θ , ~ν/||~ν|| is the angle of ~ν. The utility of this
factorization is that EW

j is the only term dependent on the

weighting W and voxel location j , but as a function of ~Θ
rather than ~ν, EW

j is a function of one fewer dimension

than HW
j . The J (~ν) term does not depend on the weighting

and voxel location.
We describe applying this factorization to accelerate com-

puting variance maps and predicting numerical observer
SNRs using frequency-domain methods.

C. Variance Prediction

For reconstructions made under the assumptions de-
scribed in Section II-A, the covariance of the reconstruction,
denoted Σx̂, is given approximately as [2]:

Σx̂ ≈ (ATWA+α∇2R(x̆))−1ATŴA·
(ATWA+α∇2R(x̆))−1, (10)

where the diagonal matrices W and Ŵ are defined as:

[W]i i ,
∂2

∂y2 Li (Yi ; y)

∣∣∣∣
y=[Ax̆]i

(11)

[Ŵ]i i , var(Yi ) · ∂2

∂y∂Yi
Li (Yi ; y)

∣∣∣∣
y=[Ax̆]i

. (12)

Expression (10) is impractical in CT due to the inversion
of a large matrix. Approximating the Hessian using (4) and
using the frequency-domain approximations of (7) and (8),
finding one element of (10) simplifies to

var(x̂ j ) ≈
∫
[− 1

2 , 1
2

]n

HŴ
j (~ν)

(HW
j (~ν)+αR(~ν))2

d~ν. (13)

Using the factorization of (9) in (13), we can reduce this
integral by a dimension:

var(x̂ j ) ≈α−1
∫

Sn

EŴ
j (~Θ)

EW
j (~Θ)

G(α−1EW
j (~Θ),~Θ)d~Θ, (14)

where G(γ,~Θ) is a function defined as

G(γ,~Θ),
∫ %max(~Θ)

0

γJ (%,~Θ)

(γJ (%,~Θ)+R(%,~Θ))2
%n−1 d%, (15)

and where %max(~Θ) = 1/(2||~Θ||∞) is the maximum extent of
% in [−1/2,1/2]n . In general, G cannot be computed in a

closed form, but it is well-behaved and depends only on
voxel shape (which determines J (~ν)) and regularizer (which
determines R(~ν)). We precompute a single table of values
of G and use that table to predict variance maps via (14)
for multiple voxels, any regularization parameter α, any
weighting W, any voxel spacing or scan geometry.

Specific to small cone angle 3DCT geometries, in [5] we
proposed another factorization like (9). This factorization
is separable not in spherical coordinates (%,~Θ) but in
cylindrical coordinates (ρ,Φ,ν3):

HW
j (~ν) ≈ Jcyl(~ν)EW

j ,cyl(Φ). (16)

Like (9), Jcyl does not depend on the voxel location or
weighting; EW

j ,cyl does, but is a function of only the cylinder
angle Φ. Like (14), we simplify (13) using (16):

var(x̂ j ) ≈α−1
∫ 2π

0

EŴ
j ,cyl(Φ)

EW
j ,cyl(Φ)

Gcyl(Φ,α−1EW
j ,cyl(Φ))dΦ, (17)

where we define another object-independent function Gcyl:

Gcyl(Φ,γ),
∫ ρmax(Φ)

0

∫ 1
2

− 1
2

γJcyl(~ν)

(γJcyl(~ν)+R(~ν))2 ρdν3dρ. (18)

In this case, ρmax = 1/(2max{|cosΦ|, |sinΦ|}). Again, Gcyl has
no closed form but is a well-behaved function of only two
parameters that we precompute and tabulate. We compute
this table only once for a given regularizer and voxel shape.
Using the table, variance prediction via (17) simply requires
looking up values of Gcyl and numerically integrating them
in 1D. This integration can use a coarse discretization
of Φ with reasonably accurate predicted variance. While
the derivation differs, (17) is the form for fast variance
prediction given in [4], [5], which also reduces to the
form given in [6] for quadratic regularization and an axial
geometry.

III. RESULTS

To evaluate our fast variance prediction approach (17), we
compared it to an empirical variance map. We scanned a
thorax phantom with added spherical nodules 10 times with
a GE Discovery CT750 HD scanner and reconstructed each
of the 10 sinograms separately to produce the empirical
variance map of the reconstruction. Each scan was a one-
rotation axial scan—since we could not ensure that each
scan began at the same starting angle, using multiple real-
izations of the same helical scan to produce an empirical
variance was not possible with our physical CT scanner.
With the axial scans, we used a projection matrix A that
was correctly aligned to the starting angle of each scan so
that each reconstruction was aligned to the same voxel grid.
We used a 40mA tube current and 120 kVp tube voltage. The
scan time was 0.5 seconds.

We reconstructed each of the 10 sinograms using statisti-
cal reconstruction methods. The size of the reconstruction
was 512×512×32 voxels with voxel size ∆x ×∆z = 0.9764×
0.625mm. Each reconstruction used 100 iterations of an
ordered-subset method [7] using 64 subsets. We performed
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the reconstructions using two different regularizers. In the
first case, the regularization used a quadratic penalty and
was spatially varying strength using the method of [8] to
produce uniform spatial resolution. In the second case, the
penalty function used the Huber potential with a threshold
δ of 10 Hounsfield units but was not spatially varying in
regularization strength. In both cases, the elements of the
weighting matrix W were chosen to correspond to the CT
scanner’s estimate of the inverse of the variance of each ray
given the scanner-specific corrections used [9].

Figures 1(a) (with spatially varying, quadratic regular-
ization) and 2(a) (uniform, Huber-penalized regularization)
show axial, sagittal, and coronal slices of the 3D map of
the empirical standard deviation from our simulated recon-
structions. As in the simulated empirical standard deviation
maps, the empirical maps were noisy, so we blurred the
empirical variance maps with a 2D gaussian kernel with
a FWHM of 5 voxels each in each direction. Figures 1(b)
and 2(b) show the corresponding slices through the 3D
predicted standard deviation map from (17). We computed
the standard deviation once per 4× 4× 1 block and used
nearest-neighbor interpolation to fill in the rest. Figures
1(c) and 2(c) show the absolute magnitude of the error
of our approximated standard deviation compared to the
empirical results. Figures 1(d) and 2(d) show the empirical
and predicted standard deviation along a one-dimensional
coronal profile through the center of the image, along with
the standard deviation as computed from (13) using the
DSFT of hW

j as the LFR (labelled ‘DFT-based’).
Table I compares the computation time required to find

the empirical variance with the computation time required
to predict the variance for the entire volume using the DFT-
based method and using our methods. We used the DFT-
based method only to produce the one-dimensional profiles
shown in Figure 1(d), and 2(d); since the computation time
is large, we extrapolate to predict the DFT computation time
for the entire volume for Table I.

Empirical DFT-based Proposed
3.63 ·105 1.07 ·108 6.73 ·102

(10 realizations)

TABLE I: Computation time of variance prediction methods
(CPU seconds)

IV. DISCUSSION

We demonstrated a method that is fairly accurate in the
case of quadratic regularization, and accurate away from
image edges in the case of edge-preserving regularization.
From the profiles in Figures 1(d) and 2(d), we can see
that the majority of the error in our method is incurred
in the step of approximating (10) with (13), and not in
approximating (13) with (17). However, we can compute
(17) faster than (13) by a factor of over 105.

V. FUTURE WORK

One main area of future work is using the separable
approximation (9) in fast prediction of the performance of a

linear image observer for binary classification of iteratively
reconstructed images. For example, the squared SNR of
the ideal non-prewhitened image observer for detecting
whether a feature f has been added to a background image
x is given by:

SNR2 = (f̂T f̂)2

f̂TΣx̂ f̂
, (19)

where f̂ is the difference in the mean reconstructions
with and without the feature present. While this is not
easily computable due to the presence of Σx̂ and f̂, we
can make frequency-domain approximations specific to the
numerator and denominator and then accelerate them by
using our factorization.

Empirical DFT-based Proposed
SNR2 4.0 5.0 5.3

Time (CPU sec.) 3.00 ·106 16.4 4.32 ·10−4

TABLE II: Comparison of SNR prediction methods.

Table II shows preliminary results of this observer perfor-
mance prediction for a simulated 2D problem. These results
are similar to those for variance prediction, namely, that
there is a notable speed up using our method at the cost
of decreased accuracy.
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Fig. 1: Three slices of standard deviation maps using spatially varying, quadratic regularization (Hounsfield units). Coronal
and sagittal slices were stretched in the trans-axial direction by a factor of two for visualization.
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Fig. 2: Three slices of standard deviation maps using spatially uniform, Huber-penalized regularization (Hounsfield units).
Coronal and sagittal slices were stretched in the trans-axial direction by a factor of two for visualization.
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