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Abstract—Statistical reconstruction for low-dose CT can pro-
vide desirable image quality, but the computational burden still
remains a challenge, particularly for large 3D helical scans.
Parallel computing can help reduce computation times, but
simple parallelization methods for CT reconstruction can be
hampered by relatively large data communication times between
nodes that do not share memory. This paper describes a block-
separable surrogate approach to developing algorithms that
facilitate parallelization. These methods reduce communication
between nodes and allow multiple independent updates on each
node, while attempting to maintain convergence rates of recent
accelerated algorithms. As a preliminary study, we investigated
one version of the proposed algorithm in Matlab using a
simulated 3D helical CT scan.

I. INTRODUCTION

Statistical X-ray CT reconstruction [1] can reduce noise and

artifacts from safer low-dose CT scans unlike conventional

filtered back-projection (FBP) method, but reconstructing large

helical CT scan data requires long computation times. Ordered

subsets (OS) methods based on separable quadratic surrogates

(SQS) [2], [3] have been used widely in CT research because

they are very parallelizable and heuristically reduce the com-

putational cost by using only a subset of data per iteration.

However, these efficient OS methods are still slower than

desired for ubiquitous clinical use, so further acceleration of

OS methods has been studied [4]–[6].

Distributed computing resources have been central to accel-

erating many big data computational problems. CT researchers

also have pursued speedups by distributing expensive compu-

tations, such as projection operations [7], [8] and unregularized

SIRT methods [9], to several nodes (that do not share mem-

ory). For regularized statistical CT reconstruction, the OS-

SQS method with momentum (OS-SQS-mom) [4] was imple-

mented on a cloud service, showing promising reconstruction

time [10]. (This algorithm was also implemented on GPU for

accelerated interventional CT reconstruction [11].)

Although the distributed implementation of OS-SQS-mom

reduced run time substantially, data communication between

nodes became a bottleneck when using many nodes [10].

To reduce communication, while aiming to preserve the fast

convergence speed of OS-SQS-mom, this paper adapts a

block-separable surrogate (BSS) technique [12] to 3D helical

CT scans.

This paper first reviews the OS-SQS-mom algorithm [4]

and its distributed implementation [10]. For reduced commu-

nication time between nodes, we review and adapt BSS [12]

with the OS-SQS-mom method. The result section reports a

preliminary investigation of a Matlab version of the proposed
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parallelizable method applied to a 3D helical scan, comparing

its convergence speed to that of standard OS-SQS-mom.

II. STATISTICAL IMAGE RECONSTRUCTION USING

ORDERED SUBSETS WITH MOMENTUM

We reconstruct a patient image x̂ ∈ RNp

+ by minimizing

a (strictly convex and continuously differentiable) penalized

weighted least squares (PWLS) cost function [1]:

x̂ = arg min
x�0

{
Ψ(x) , L(x) + R(x)

}
, (1)

L(x) , 1

2
‖y −Ax‖2

W ,

where x ∈ RNp

+ is an (unknown) image, y ∈ RNd is a noisy

measured sinogram data, A ∈ RNd×Np

+ is a forward projection

operator [13], W ∈ RNd×Nd is a diagonal statistical weighting

matrix, and R(x) is an edge-preserving regularizer.

Among many optimization methods, we first focus on using

massively parallelizable SQS methods [2], [3] that iteratively

minimize the SQS surrogate at the nth iteration:

Ψ(x) ≤ φSQS(x;x(n)) (2)

, Ψ(x(n)) + (x− x(n))⊤∇Ψ(x(n)) +
1

2
||x− x(n)||2D

for a diagonal majorizing matrix D ∈ RNp×Np , as

x(n+1) = arg min
x�0

φSQS(x;x(n))

=
[
x(n) −D−1∇Ψ(x(n))

]
+
, (3)

where [·]+ enforces the nonnegativity constraint. After com-

puting the gradient, SQS updates each voxel independently.

The usual simple choice of D is [2]:

D = diag
{
A⊤WA1

}
+DR, (4)

where 1 = {1} ∈ RNp and DR is a majorizer for the Hessian

of R(x) [2], [3].

Computing the gradient ∇Ψ(x) in (3) is expensive for large

helical scans, so OS methods [2] are used widely with SQS by

dividing Nd projection data into (non-overlapping) M subsets

and using the following approximation:

∇Ψ(x) ≈ M∇Ψm(x) (5)

, MA⊤
mWm(Amx− ym) + ∇R(x)

for m = 0, . . . ,M − 1, leading (empirically) to M -times

acceleration in run time (for early iterations). The matrices

Am, Wm and ym are submatrices of A, W and y corre-

sponding to the mth subset of Nd projection data. Note that

the computation of ∇R(x) is small compared to ∇L(x).
Table I summarizes the momentum-accelerated [14] version

of the OS-SQS method that shows significant (heuristic)
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1: Initialize x(0) = z(0) by FBP, t(0) = 1, and compute D.
2: for n = 0, 1, . . .
3: for m = 0, 1, . . . ,M − 1
4: k = nM + m

5: t(k+1) = 1
2

(
1 +

√
1 + 4

[
t(k)

]2
)

6: g
(k)
m = M∇Ψm(z( k

M ))

7: x( k+1
M ) =

[
z( k

M ) −D−1g
(k)
m

]
+

8: z( k+1
M ) = x( k+1

M ) + t(k)−1
t(k+1)

(
x( k+1

M ) − x( k
M )

)

9: end for
10: end for

TABLE I: OS-SQS-mom method

acceleration [4] and reduces to the ordinary OS-SQS when

t(k) = 1 for all k. This algorithm is (heuristically) expected to

minimize the cost function with the fast rate O(1/(nM)2) in

early iterations1 when the approximation (5) is appropriate [4].

This OS-SQS-mom in Table I is well-suited for a paral-

lelizable computing platforms that share memory. However,

a typical implementation of OS-SQS-mom may be inefficient

for distributed computing resources because the gradient com-

putation ∇Ψm(x) requires expensive global communications

across nodes [10]. The next section reviews the distributed

version of OS-SQS-mom in [10] and notes some drawbacks.

III. PREVIOUS DISTRIBUTED OS APPROACH

Table II summarizes our previous distributed OS-SQS-

mom approach [10]. Because global communication for the

gradient computation ∇Ψm(x) is expensive, we divided the

problem (1) into S sub-problems (slabs of contiguous z-

slices), and assigned each sub-problem to a cluster consisting

of multiple nodes. For example in [10], a 320-slice helical

CT scan was partitioned into 5 slabs of 64 slices, and each

slab was reconstructed independently. However, because of the

“long object” problem in helical CT, to reconstruct a slab of

slices of interest one must include additional “padding” end

slices. For example in [10], for each slab of 64 slices we

also estimated an additional 32 slices on each end of each

slab; these extra slices overlap with neighboring slabs and

are eventually discarded, reducing efficiency and limiting how

large S can be. (In [10], each cluster was assigned 10 nodes,

summing up to B = 50 nodes total for S = 5 slabs.)

Mathematically, we divided an image x into S (overlapping)

sub-images {xs} and solved each sub-problem separately:

x̂s = arg min
xs�0

{
Ψ̆·,s(xs) ,

1

2
||y −A·,sxs||2W + R̆s(xs)

}

for s = 1, . . . , S, where A·,s ∈ RNd×|xs| is the system matrix

and R̆s(xs) is the regularizer for each s. The solutions {x̂s}
may differ from (1), particularly near the slab boundaries.

Even though slab partitioning reduces communication, the

communication within each cluster s required after each

iteration (k) remained a bottle-neck [10]. In this paper, we

propose to adapt the BSS technique [12] that can reduce the

global communications required for gradient computation.
1The convergence and stability of the OS-SQS-mom algorithm in Table I is

discussed in detail in [4]. In addition, we recently developed another version
of OS-SQS-mom that converges twice faster than Table I [15], [16].

1: Initialize x(0) = z(0) by FBP, t(0) = 1, and compute D.

2: Distribute image x(0) and data y into S clusters.
3: for n = 0, 1, . . .
4: for m = 0, 1, . . . ,M − 1
5: k = nM + m

6: t(k+1) = 1
2

(
1 +

√
1 + 4

[
t(k)

]2
)

7: for s = 1, . . . , S simultaneously

8: g
(k)
m,s = M∇Ψ̆m,s(z

( k
M )

s ), by communicating

Wm(Am,sz
( k
M )

s − ym) within cluster s.

9: x
( k+1

M )
s =

[
z

( k
M )

s −D−1
s g

(k)
m,s

]
+

10: z
( k+1

M )
s = x

( k+1
M )

s + t(k)−1
t(k+1)

(
x

( k+1
M )

s − x
( k
M )

s

)

11: Communicate z
( k+1

M )
s within cluster s.

12: end for
13: end for
14: end for

TABLE II: Distributed OS-SQS-mom method

IV. BLOCK-SEPARABLE SURROGATE

To reduce communication, we would like each node to

perform multiple iterations before synchronizing, instead of

communicating for every (subset) gradient computation. We

also want the algorithm to be guaranteed to converge in its one-

subset (M =1) version. The BSS approach in [12], previously

applied to image restoration, provides block-separable surro-

gates where each node can minimize its (non-overlapping)

block xb independently. The BSS for B blocks (nodes) has

the form:

Ψ(x) ≤ φBSS(x;x(n)) (6)

,
B∑

b=1

{
φL,b

BSS(xb;x
(n)) + φR,b

BSS(xb;x
(n))

}
,

where the BSS surrogate of the quadratic L(x) is defined as

φL,b
BSS(xb;x

(n)) , C
(n)
b + (xb − x

(n)
b )⊤∇bL(x(n)) (7)

+
1

2
||xb − x

(n)
b ||2HL

b

for b = 1, . . . , B, where L(x(n)) =
∑B

b=1 C
(n)
b . A natural

choice for the majorizer Hessian HL
b [12] is

HL
b , A⊤

·,bWΛbA·,b, (8)

where A·,b ∈ RNd×|xb| is the columns of the system matrix

corresponding to the slices in the bth block, and

Λb , diag{A1} diag−1{A·,b1b} (9)

for b = 1, . . . , B. The definition of the BSS surrogate

φR,b
BSS(xb;x

(n)) for R(x) is omitted for brevity.

Since ∇2Ψ(x) = A⊤WA + ∇2R(x) will be somewhat

block band-diagonal for helical scans, we expect a block

diagonal majorizer ∇2φBSS(x;x(n)) of BSS to be closer to

∇2Ψ(x) than a diagonal majorizer D, i.e.,

∇2Ψ(x) - ∇2φBSS(x;x(n)) ≺≺ D. (10)

However, for large B providing massively distributed compu-

tation, the difference between ∇2Ψ(x) and ∇2φBSS(x;x(n))
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may become undesirably large. Therefore, we study the trade-

off regarding the choice of B in the result section.

Next we must select an algorithm for minimizing the BSS

majorizer (6). For simplicity we consider OS-SQS2-mom in

this paper, but we plan to investigate other choices [5], [6] in

the future. The next section describes the proposed algorithm

that iteratively minimizes the BSS surrogate function node-

independently using OS-SQS-mom.

V. PROPOSED DISTRIBUTED BLOCK-SEPARABLE

SURROGATE ALGORITHM

Table III summarizes the proposed distributed BSS algo-

rithm that guarantees monotonic descent update and conver-

gence for the one-subset (M =1) version. The key difference

between the two algorithms in Tables II and III is that the latter

does not require communication when computing the gradient

and image transfer after every update, unlike the former.

Except for the communication time (and memory issue),

both Tables II and III require fairly similar computational cost

per iteration, because the (mth subset) gradient in Table III is

computed efficiently as

g
(l)
m,b =MA⊤

m,bWm (11)

×
{
Amz(0) − ym + Λb

mAm,b(z
( l
M )

b − z
(0)
b )

}

+ ∇φR,b
BSS(z

( l
M )

b ; z
(0)
b ),

requiring one (mth subset) forward and back projection similar

to the computation of g
(k)
m,s in line 8 of Table II. Here, we

use two-input forward projector that simultaneously computes

Am,bz
(0) and Am,b(z

( l
M )

b − z
(0)
b ) in (11) with small over-

head [3]. For efficiency, we precompute the matrix Λb in (9)

simultaneously with D in (4).

VI. RESULTS

We simulated the performance of the proposed BSS algo-

rithm in Table III, and compared it with OS-SQS-mom in

Table I (or Table II for a single-slab), using a 256×256×160
XCAT phantom image [17] scanned by one turn of a simulated

helical trajectory (pitch 1.0) with total 492 projection views

and 444 × 32 detector size. (The 160-slice image includes

32 extra slices padded on each end to deal with the “long

object” problem.) Fig. 1 illustrates the initial FBP image

x(0) and the converged image x̂. Although our goal is to

evaluate the efficiency of the algorithm on a multi-node

platform, this paper reports only a preliminary convergence

result versus “iteration” and predicted “cluster time” based on

the component run-time statistics in [10].

Fig. 2 shows convergence plots of the proposed BSS

method with the choices of B = 2, 5, 10 and L/M =
2, 5, 10, 20 for M = 12 subsets, compared to OS-SQS-mom

in Table I for M = 12. Convergence speed is measured

by the root mean square difference (RMSD) between x(n)

and the converged image x̂ in Hounsfield Units (HU), i.e.,

RMSD(n) = (x(n) − x̂)/
√

Np [HU], versus iteration (that

counts one iteration after M subset iterations). Fig. 2(a) shows

2A standard choice of a diagonal majorizing matrix Db ∈ R|xb|×|xb| of
SQS for minimizing the BSS surrogate (6) has values that are the same as D
in (4) for each block b.

1: Initialize x̃(0) by FBP, and compute D.

2: Distribute image x̃(0) and data y into B nodes.
3: for n = 0, 1, . . .
4: Minimize φBSS(x; x̃(n)) in (6)

using L sub-iterations of OS-SQS-mom.

1) Initialize x(0) = z(0) by x̃(n), and t(0) = 1.
2) for l = 0, 1, . . . , L− 1
3) m = l mod M

4) t(l+1) = 1
2

(
1 +

√
1 + 4

[
t(l)

]2
)

5) for b = 1, . . . , B simultaneously

6) g
(l)
m,b = M∇bφBSS,m(z( l

M ); z(0))

7) x
( l+1

M )

b =
[
z

( l
M )

b −D−1
b g

(l)
m,b

]
+

8) z
( l+1

M )

b = x
( l+1

M )

b + t(l)−1
t(l+1)

(
x

( l+1
M )

b − x
( l
M )

b

)

9) end for
10) end for

11) x̃(n+1) = x( L
M )

5: Communicate x̃(n+1).
6: end for

TABLE III: Proposed distributed BSS method with OS-SQS-mom

that using many blocks (B) for massive parallelization leads

to loose BSS surrogates, exhibiting slow convergence speed

(vs. iteration). The results also illustrate that letting sub-

iterations L to be large initially may be preferable to fully

benefit from the fast initial speed of OS-SQS-mom, while the

algorithm might reach near the optimum of BSS after only a

few sub-iterations and have minimal updates for the rest of

L sub-iterations. For example in Fig. 2(b), the RMSD plot of

BSS(B=10, L/M =20) algorithm does not decrease after 10
(outer) iterations.

Fig. 2(c) plots RMSD versus predicted cluster time that con-

siders the communication time analysis for 10-nodes in [10].

Fig. 5 in [10] illustrates that using 10 nodes (for a single 128-

slice slab and 12 subsets in Table II) reduces the computation

time of the forward and back projection by about 6× (not

an ideal 10×) per iteration, while undesirably adding the

communication time that is equivalent to the computation time

of the projection per iteration, leading to overall about only

3× acceleration from using 10 nodes. Hypothetically, Fig. 2(c)

illustrates that our proposed method converges faster than OS-

SQS-mom in (predicted) run time initially. Fig. 2(c) suggests

we must further improve the BSS method to maintain the

initial acceleration of BSS (in run time) in later iterations so

that the BSS method stays faster than the standard OS-SQS-

mom overall.

Figs. 1(c) and 1(d) show reconstructed images from 10
iterations of OS-SQS-mom and 20 iterations of BSS(B =
10, L/M = 5) that are expected to have similar computation

time for 10-nodes platform, and their difference images from

the converged image are given for visibility in Fig. 1. The

resulting image after a finite number of iterations of the

BSS showed incomplete convergence near block boundaries.

(Results not shown.) This is because image information of

neighboring blocks provided to each node that is mostly used

for voxel updates near block boundaries becomes outdated

due to reduced communication in the BSS method. Thus, we

modified the method by dithering the block boundaries for
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(a) Initial FBP image x(0)

 

(c) x(10) of OS-SQS-mom(M =12)

 

(e) Difference between (b) and (c)
 

(b) Converged image x̂

 

 

800 900 1000 1100 1200
(d) x(20) of BSS(B=10,M =12, L/M =5)
with boundary dithering

 

 

−50 0 50
(f) Difference between (b) and (d)

Fig. 1: 3D XCAT simulation: Center coronal plane of (a) initial FBP image x(0), (b) converged image x̂, and reconstructed images by (c) 10 iterations of
OS-SQS-mom(M =12) and (d) 20 iterations of BSS(B=10,M =12, L/M =5) with boundary dithering. Difference images (e): between (b) and (c), and
(f): between (b) and (d) are shown for visibility. (Padded end slices are cropped.)
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(c) vs. predicted cluster time

Fig. 2: RMSD plots of the OS-SQS-mom and the proposed BSS method (a-b) vs. iteration, and (c) vs. predicted cluster time.

each (n-th) BSS surrogate to improve convergence speed near

block boundaries, leading to the image illustrated in Fig. 1(d).

(Details omitted.) Fig. 1(d) is close to Fig. 1(c) (having similar

RMSD values after comparable predicted cluster time) and

does not have any block discontinuity unlike the plain BSS.

Dithering significantly improves convergence speed for slices

near the block boundaries, but because the boundaries are a

small fraction of the image volume the RMSD values in Fig. 2

change only slightly.

VII. CONCLUSION

We introduced a block-separable surrogate technique to

reduce communication time in a potentially more efficient dis-

tributed OS-SQS-mom approach. Preliminary predicted tim-

ing results suggest that the early convergence speed of the

proposed BSS algorithm can be faster than that of the con-

ventional OS-SQS-mom method, but further refinements are

needed for overall acceleration. In addition, orchestrating the

memory communication and computation on a real distributed

platform is needed as future work.

REFERENCES

[1] J-B. Thibault, K. Sauer, C. Bouman, and J. Hsieh, “A three-dimensional
statistical approach to improved image quality for multi-slice helical
CT,” Med. Phys., vol. 34, no. 11, pp. 4526–44, Nov. 2007.

[2] H. Erdoğan and J. A. Fessler, “Ordered subsets algorithms for trans-
mission tomography,” Phys. Med. Biol., vol. 44, no. 11, pp. 2835–51,
Nov. 1999.

[3] D. Kim, D. Pal, J-B. Thibault, and J. A. Fessler, “Accelerating ordered
subsets image reconstruction for X-ray CT using spatially non-uniform
optimization transfer,” IEEE Trans. Med. Imag., vol. 32, no. 11, pp.
1965–78, Nov. 2013.

[4] D. Kim, S. Ramani, and J. A. Fessler, “Combining ordered subsets
and momentum for accelerated X-ray CT image reconstruction,” IEEE

Trans. Med. Imag., vol. 34, no. 1, pp. 167–78, Jan. 2015.

[5] H. Nien and J. A. Fessler, “Fast X-ray CT image reconstruction using a
linearized augmented Lagrangian method with ordered subsets,” IEEE

Trans. Med. Imag., vol. 34, no. 2, pp. 388–99, Feb. 2015.
[6] M. G. McGaffin and J. A. Fessler, “Duality-based projection-domain

tomography solver for splitting-based X-ray CT reconstruction,” in Proc.

3rd Intl. Mtg. on image formation in X-ray CT, 2014, pp. 359–62.
[7] B. Meng, G. Pratx, and L. Xing, “Ultrafast and scalable cone-beam CT

reconstruction using MapReduce in a cloud computing environment,”
Med. Phys., vol. 38, no. 12, pp. 6603–9, Dec. 2011.

[8] S. Srivastava, A. R. Rao, and V. Sheinin, “Accelerating statistical
image reconstruction algorithms for fan-beam x-ray CT using cloud
computing,” in Proc. SPIE 7961 Medical Imaging 2011: Phys. Med.

Im., 2011, p. 796134.
[9] J. Gregor, “Distributed multi-core implementation of SIRT with vector-

ized matrix kernel for micro-CT,” in Proc. Intl. Mtg. on Fully 3D Image

Recon. in Rad. and Nuc. Med, 2011, pp. 64–7.
[10] J. M. Rosen, J. Wu, T. F. Wenisch, and J. A. Fessler, “Iterative helical

CT reconstruction in the cloud for ten dollars in five minutes,” in Proc.

Intl. Mtg. on Fully 3D Image Recon. in Rad. and Nuc. Med, 2013, pp.
241–4.

[11] A. S. Wang, J. W. Stayman, . Y. Otake, G. Kleinszig, S. Vogt, and J. H.
Siewerdsen, “Nesterov’s method for accelerated penalized-likelihood
statistical reconstruction for C-arm cone-beam CT,” in Proc. 3rd Intl.

Mtg. on image formation in X-ray CT, 2014, pp. 409–13.
[12] S. Sotthivirat and J. A. Fessler, “Image recovery using partitioned-

separable paraboloidal surrogate coordinate ascent algorithms,” IEEE

Trans. Im. Proc., vol. 11, no. 3, pp. 306–17, Mar. 2002.
[13] Y. Long, J. A. Fessler, and J. M. Balter, “3D forward and back-projection

for X-ray CT using separable footprints,” IEEE Trans. Med. Imag., vol.
29, no. 11, pp. 1839–50, Nov. 2010.

[14] Y. Nesterov, Introductory lectures on convex optimization: A basic

course, Kluwer, 2004.
[15] D. Kim and J. A. Fessler, “Optimized first-order methods for smooth

convex minimization,” 2014, arxiv 1406.5468.
[16] D. Kim and J. A. Fessler, “Optimized momentum steps for accelerating

X-ray CT ordered subsets image reconstruction,” in Proc. 3rd Intl. Mtg.

on image formation in X-ray CT, 2014, pp. 103–6.
[17] W. P. Segars, M. Mahesh, T. J. Beck, E. C. Frey, and B. M. W. Tsui,

“Realistic CT simulation using the 4D XCAT phantom,” Med. Phys.,
vol. 35, no. 8, pp. 3800–8, Aug. 2008.

The 13th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

141


