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ABSTRACT

First-order methods are used widely for large scale opti-

mization problems in signal/image processing and machine

learning, because their computation depends mildly on the

problem dimension. Nesterov’s fast gradient method (FGM)

has the optimal convergence rate among first-order meth-

ods for smooth convex minimization; its extension to non-

smooth case, the fast iterative shrinkage-thresholding al-

gorithm (FISTA), also satisfies the optimal rate; thus both

algorithms have gained great interest. We recently introduced

a new optimized gradient method (OGM) (for smooth con-

vex functions) having a theoretical convergence speed that

is 2× faster than Nesterov’s FGM. This paper further dis-

cusses the convergence analysis of OGM and explores its

fast convergence on an image restoration problem using a

smoothed total variation (TV) regularizer. In addition, we

empirically investigate the extension of OGM to nonsmooth

convex minimization for image restoration with l1-sparsity

regularization.

Index Terms— First-order methods, iterative shrinkage-

thresholding, optimized gradient method, image restoration.

1. INTRODUCTION

An observed signal/image b ∈ R
d is often modeled as:

b = Axtrue + ǫ, (1)

where A ∈ R
d×p is a system matrix such as a blur matrix,

xtrue ∈ R
p is an unknown signal/image, and ǫ ∈ R

d is noise.

There has been extensive research on recovering xtrue from

b by formulating optimization problems, and this paper dis-

cusses efficient first-order optimization methods.

We are interested in minimizing a convex function:

x∗ ∈ X∗(F ) = argmin
x∈Rd

{

F (x) , f(x) + g(x)
}

, (2)

where x∗ denotes a (possibly non-unique) minimizer, X∗(F )
denotes the set of minimizers of F (x), function f(x) is

convex and smooth, i.e., continuously differentiable with

This work was supported in part by NIH grant U01 EB 018753 and

equipment donations from Intel Corporation.

L-Lipschitz continuous gradient:

||∇f(x)−∇f(y)|| ≤ L||x− y||, (3)

and g(x) is convex and possibly nonsmooth.

For image restoration problems, one can use analysis

models [1] to define the cost function:

f(x) , ||b−Ax||22 + λR(x), and g(x) = 0 (4)

where λ is a regularization parameter, and R(x) penalizes dif-

ferences between neighboring pixels using a smooth potential

function such as the Huber function. To promote sparsity of

the finite-differences of an image x, total variation (TV) reg-

ularization [1, 2] is used extensively:

f(x) , ||b−Ax||22, and g(x) = λRTV(x). (5)

Alternatively, one can consider synthesis models [3]:

f(z) , ||b−AWz||22, and g(z) = λ||z||1, (6)

where x = Wz and the columns of W consist of a basis

such as a wavelet basis.

To solve image restoration problems like (4)-(6), many

first-order methods suitable for large-scale problems have

been developed. This paper focuses on first-order methods

that minimize the primal problem (2), such as the gradi-

ent method (GM), Nesterov’s FGM [4, 5, 6], the iterative

shrinkage-thresholding algorithm (ISTA) [3] and acceler-

ated ISTA methods such as TwIST [7] and FISTA [8]; other

first-order methods [1, 9] tackle the dual or primal-dual for-

mulation of (2).

Both FGM [4] and FISTA [8] decrease the cost function

with rate O(1/n2), where n counts the number of iterations,

achieving the optimal rate [5] and thus were thought to be

the best first-order algorithms until recently. Recently, the pa-

pers [10, 11] studied a novel framework for developing best-

performing first-order methods and described a new method,

called OGM [11], that converges twice as fast as FGM (for

unconstrained smooth convex minimization).

This paper improves the OGM convergence analysis and

investigates its convergence speed on image restoration prob-

lems. (Preliminary work in [12] applied OGM to a tomogra-

phy problem.) Even though the current convergence theory

of OGM supports only smooth convex minimization, here we

empirically extend OGM to minimize nonsmooth cases such

as (5) and (6), investigating possible acceleration from OGM-

type algorithms compared to the well-known FISTA method.
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2. NESTEROV’S FAST GRADIENT METHOD

1: Initialize x0 = y0 and t0 = 1.

2: for n = 0, 1, . . .

3: xn+1 = yn − 1
L
∇f(yn)

4: tn+1 =
1+

√
1+4t2n
2

5: yn+1 = xn+1 +
tn−1
tn+1

(

xn+1 − xn

)

Table 1. Nesterov’s fast gradient method [4].

Table 1 reviews Nesterov’s FGM for smooth convex min-

imization, i.e., g(x) = 0; it is a simple modification of

the classical gradient descent method (GM) with an extra

momentum term in line 5. FGM is easily transformed to

FISTA [8] by replacing line 3 of Table 1 with the following

proximal update:

xn+1 , argmin
x

{

g(x) +
L

2

∥

∥

∥

∥

x−
(

yn − 1

L
∇f(yn)

)∥

∥

∥

∥

2
}

.

(7)

In Table 1, both FGM and FISTA reduce to GM and ISTA (or

a proximal method in general) when tn = 1 for all n.

A sequence {xn} generated by either FGM (for g(x) =
0) or FISTA satisfies the known convergence bound [4, 8]:

F (xn)− F (x∗) ≤
2L||y0 − x∗||2

(n+ 1)2
(8)

for all n = 0, 1, . . .. (The sequence {yn} of FGM is also

shown to satisfy the bound (8) in [11].) The O(1/n2) rate

in (8) is known to be optimal because Nesterov exhibited

a smooth convex function f(x) that satisfies the following

lower bound [5]:

3L||y0 − x∗||2
32(n+ 1)2

≤ f(xn)− f(x∗) (9)

for all n = 1, · · · ,
⌊

p−1
2

⌋

and any first-order method having

the general form

xn+1 = xn − 1

L

n
∑

k=0

hn+1,k∇f(xk), n = 0, 1, . . . (10)

with any “step-size” factors {hn+1,k}.

Even though the 1/n2 rate order in (8) is optimal, the

gap in the constants between (8) and (9) (i.e., 2 vs 3/32) re-

mains non-negligible. The next section summarizes recent

first-order methods [10, 11] that provide faster convergence

(in the constant factor) than FGM, by optimizing the choice

of {hn+1,k} in (10).

3. OPTIMIZED GRADIENT METHOD

3.1. Prior work

Seeking to improve on FGM for unconstrained smooth con-

vex minimization, the paper [10] formulated the following

interesting approach to designing the best-performing first-

order method of the form (10):

min
{h

n+1,k
}

max
f∈FL(Rp),

y0,...,yN∈R
p,

x
∗
∈X∗(f)

f(yN )− f(x∗) (P0)

s.t. ||y0 − x∗|| ≤ C, and for n = 0, . . . , N − 1 :

yn+1 = yn − 1

L

n
∑

k=0

hn+1,k∇f(yk),

where FL(R
p) consists of all p-dimensional real functions

that are convex and smooth with L-Lipschitz continuous gra-

dient, and C is a positive constant. Because the problem (P0)

seems intractable, [10] relaxed the functional constraint f ∈
FL(R

p) with the (necessary condition) inequalities [5]:

1

2L
||∇f(yn)−∇f(yk)||2

≤ f(yn)− f(yk)− 〈∇f(yk), yn − yk〉
for all n, k = 0, . . . , N, ∗, and introduced a series of re-

laxations to simplify (P0). The relaxed version of (P0) was

solved numerically using semidefinite programming [10], but

the corresponding first-order algorithm was inefficient com-

putationally because the optimal {hn+1,k} values seemed ar-

bitrary in [10].

We recently found an analytic recursive rule for opti-

mizing the relaxed version of (P0) [11], and showed how

to write the update (10) with the optimized {hn+1,k} of the

relaxed (P0) in an equivalent and efficient recursive form as

shown in Table 2. Remarkably, the additional computation

required for OGM in Table 2 compared to FGM in Table 1 is

minimal.

1: Initialize x0 = y0 and θ0 = 1.

2: for n = 0, 1, . . . , N − 1

3: xn+1 = yn − 1
L
∇f(yn)

4: θn+1 =







1+
√

1+4θ2
n

2 , n ≤ N − 2
1+

√
1+8θ2

n

2 , n = N − 1

5: yn+1 = xn+1 +
θn−1
θn+1

(

xn+1 − xn

)

+ θn
θn+1

(

xn+1 − yn

)

Table 2. Previous optimized gradient method (OGM) [11].

The final iterate yN generated by OGM in Table 2 satisfies

f(yN )− f(x∗) ≤
L||y0 − x∗||2
(N + 1)2

, (11)
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showing that the cost function (bound) decreases twice as fast

for OGM [11] than for the bound (8) of Nesterov’s FGM. In

other words, OGM requires about 1√
2

-times fewer iterations

than FGM to guarantee reaching the same cost function value.

However, the inequality (11) only bounds the last iterate yN

and no convergence analysis was provided for the sequence

{xn} in [11]. This paper extends [11] by analyzing (i.e.,

bounding) the convergence speed of {xn} for all iterations

by formulating an optimization problem with respect to xn

that is inspired by (P0) but differs slightly.

3.2. Proposed work

Here, we propose a new approach to optimizing the choice

of the “step-size” factors {hn+1,k} in (10) by considering the

following alternative to (P0) that also considers the sequence

{xn} in the formulation:

min
{h

n+1,k
}

max
f∈FL(Rp),

x1,...,xN+1∈R
p,

y0,...,yN∈R
p,

x
∗
∈X∗(f)

f(xN+1)− f(x∗) (P1)

s.t. xn+1 = yn − 1

L
∇f(yn), n = 0, . . . , N,

||y0 − x∗|| ≤ C, and for n = 0, . . . , N − 1 :

yn+1 = yn − 1

L

n
∑

k=0

hn+1,k∇f(yk),

Using the inequality [5]:

f

(

x− 1

L
∇f(x)

)

≤ f(x)− 1

2L
||∇f(x)||2,

we relax (P1) to the following form:

min
{h

n+1,k
}

max
f∈FL(Rp),

y0,...,yN∈R
p,

x
∗
∈X∗(f)

f(yN )− 1

2L
||∇f(yN )||2 − f(x∗) (P2)

s.t. ||y0 − x∗|| ≤ C, and for n = 0, . . . , N − 1 :

yn+1 = yn − 1

L

n
∑

k=0

hn+1,k∇f(yk).

We have solved the relaxed version of (P2) using methods

similar to those used in [11] for solving the relaxed version

of (P0). Remarkably, the solution for the optimized step-size

factors is very similar to the solution in [11]. Again there is

an efficient recursive implementation that is even simpler than

OGM in Table 2, as shown in Table 3. The detailed proof

will be available in [13], in which we show that sequences

{xn} generated by the proposed method in Table 3 satisfy

the following inequality:

f(xn)− f(x∗) ≤
L||y0 − x∗||2

(n+ 1)2
(12)

1: Initialize x0 = y0 and t0 = 1.

2: for n = 0, 1, . . .

3: xn+1 = yn − 1
L
∇f(yn)

4: tn+1 =
1+

√
1+4t2n
2

5: yn+1 = xn+1 +
tn−1
tn+1

(

xn+1 − xn

)

+ tn
tn+1

(

xn+1 − yn

)

Table 3. Proposed optimized gradient method (OGM).

for all n = 0, 1, . . .. Because of its simplicity and conver-

gence speed, the method in Table 3 is our new recommended

first-order algorithm for smooth convex minimization prob-

lems. We believe it is the fastest known first-order method for

such problems.

We would like to extend the OGM method in Table 3,

using the proximal update (7), to handle nonsmooth prob-

lems such as (5) and (6), just as FISTA is such an exten-

sion of FGM. We do not yet have a convergence proof for

OGM in nonsmooth cases. In practice one could use heuristic

corner rounding methods or more advanced smoothing tech-

niques [6] to convert nonsmooth problems into smooth prob-

lems and then apply OGM. However, tight corner rounding

corresponds to a large Lipschitz constant L that could slow

convergence, so we would like to try to extend OGM to non-

smooth problems.

Even without a convergence proof for the nonsmooth

case, it is interesting to extend empirically OGM in Table 3 to

nonsmooth optimization by simply replacing line 3 of Table 3

with the proximal update (7). We conjecture that the resulting

algorithm will satisfy the convergence bound (12), because

a similar relationship holds between FGM and FISTA. The

next section illustrates experimentally the potential accelera-

tion provided by an OGM-type update for nonsmooth image

restoration optimizations, as well as for a smooth restoration

problem where acceleration is expected based on the factor

of 2 ratio between (8) and (12).

4. DEBLURRING RESULT

4.1. Experimental setup

We used a 256 × 256 cameraman image xtrue that was nor-

malized to have values within [0 1]. The noisy blurred data

b was generated as described in [8, Section 5.1], where sys-

tem matrix A is a blur matrix with a (rotationally symmetric)

Gaussian filter of size 9 × 9 and standard deviation 4, and

ǫ is zero-mean white Gaussian noise with standard deviation

10−3. Fig. 1 shows both xtrue and b.

The next two subsections investigate deblurring the im-

age b with a known blur matrix A using the smooth analy-

sis model problem (4) with a Huber regularizer and using the
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(a) True image (xtrue)

 

(b) Noisy blurred image (b)

Fig. 1. Noisy deblurred cameraman image.

nonsmooth synthesis model problem (6) with a sparsity regu-

larizer, respectively.

4.2. Smooth analysis model deblurring

Instead of using |s| in the (anistropic) TV-regularizer RTV(x),
we used the (smooth) Huber function

|s|δ ,

{

|s|2
2δ , |s| ≤ δ

|s| − δ
2 , |s| > δ

(13)

for the finite-difference regularizer

R(x) =

p
∑

i=1

∑

j∈N
i

|xi − xj |δ, (14)

where Ni is a set consisting of two neighboring pixel indices

in the horizontal and vertical directions. This approach is

known to reduce staircasing artifacts that may be introduced

by TV, by properly choosing the constant δ in (13). We chose

δ = 10−2 and λ = 10−3 empirically in this experiment. The

overall function is smooth and convex (with Lipschitz con-

stant L = 1 + 8λ), so we used OGM to minimize the func-

tion (4) with (13) and (14), and compared with GM and FGM.

Fig. 2 shows the deblurred image using (4) and the con-

vergence plot of GM, FGM and OGM for minimizing (4).

 

(a) Deblurred image x∗

0 50 100 150 200

10
−2

10
0

 

 

GM

FGM

OGM

(b) F (xn)− F (x∗) vs Iteration (n)

Fig. 2. Smooth analysis model deblurring.

FGM and OGM are clearly faster than GM, and OGM pro-

vides speedup compared to FGM, with negligible extra com-

putation. To reach the same cost function value of FGM after

200 iterations, OGM required about 144 iterations, agreeing

with the theoretical ratio between (8) and (12).

4.3. Nonsmooth synthesis model deblurring

As a nonsmooth example, we investigated the l2 + l1 prob-

lem (6), where the synthesis matrix W corresponds to a three

stage Haar wavelet transform and λ = 2 × 10−5 [8, Sec-

tion 5.1]. We illustrate the acceleration of using our em-

pirical extension of OGM, which we call the optimized it-

erative shrinkage-thresholding algorithm (OISTA), and com-

pared with ISTA and FISTA. (The proximal update (7) for (6)

is a simple shrinkage operator [3].)

Fig. 3 illustrates the deblurred image using (6) and the

convergence performance of ISTA, FISTA and OISTA. Even

though the proposed OISTA lacks convergence theory, the

results show empirically that OISTA converges faster than

FISTA as predicted. Similar to Fig. 2, OISTA required about

144 iterations to reach the same cost function value of FISTA

after 200 iterations. This suggests that OISTA might satisfy

the convergence bound (12) in theory; we leave finding a con-

vergence bound for OISTA as promising future work.

 

(a) Deblurred image x∗

0 50 100 150 200

10
−2

10
0

 

 

ISTA

FISTA

OISTA

(b) F (xn)− F (x∗) vs Iteration (n)

Fig. 3. Nonsmooth synthesis model deblurring.

5. CONCLUSION

We discussed the convergence rate analysis of a new first-

order method called OGM (Table 3) and applied it to various

image restoration problems. The results agreed with the the-

ory that OGM provides two-fold acceleration over FGM (in

terms of reducing the cost function value) with minimal addi-

tional computation. Empirically we extended OGM to nons-

mooth optimization and found potential acceleration from an

OGM-type update over the widely used FISTA method. We

recommend using OGM in place of FGM in any large-scale

first-order optimization problem. Future work is to extend

the convergence bounds of OGM to nonsmooth optimization

problems.
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