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Abstract—Using non-smooth regularization in X-ray computed
tomography (CT) image reconstruction has become more pop-
ular these days due to the recent resurgence of the classic
augmented Lagrangian (AL) methods in fields such as total-
variation (TV) denoising and compressed sensing (CS). For
example, undersampling projection views is one way to reduce
radiation dose in CT scans; however, this causes strong streak
artifacts in FBP images that degrade image quality. To overcome
this problem, the split Bregman (SB) method, an alias of the AL
method in the context of `1-regularized image reconstruction
problems, has been investigated using strong non-smooth TV
and sparsity regularizations. Unfortunately, existing SB-based
methods are slow due to the iterative updates for the challenging
inner least-squares problem. This paper proposes to solve X-
ray CT image reconstruction problems with TV or sparsity
regularization using a splitting-based ordered-subsets (OS) al-
gorithm, split OS-LALM, and evaluates the proposed algorithm
using a few-view X-ray CT image reconstruction problem with
TV regularization. Experimental results show that the proposed
algorithm significantly accelerates the convergence of X-ray
CT image reconstruction with non-smooth TV regularization
over the standard (linearized) SB method and demonstrates the
effectiveness of OS acceleration with splitting-based algorithms.

I. INTRODUCTION

X-ray computed tomography (CT) is a non-invasive medical
procedure that images the attenuation properties, such as
the density distribution, of the body. It is incredibly useful
and important in the medical community, while the growing
concern about radiation dose from CT scans comes from the
increased use of CT procedures. In the past three decades,
the average American’s dose from medical exposure (not
including radiotherapy) has increased from 0.54 mSv in 1982
to 3.0 mSv in 2006, where CT procedures account for about
half of the collective dose from all medical procedures [1].
Compared with the natural background yearly dose of 3.6 mSv,
the standard radiation dose used currently can increase the
possible risk of cancers, especially for body screening with
multiple scans.

Using fewer projection views in a CT scan is one way
to reduce radiation dose, but such undersampling causes
strong streak artifacts that degrade FBP image quality. To
reduce streak artifacts, the split Bregman (SB) method [2],
a fast convex optimization method using variable splitting
technique, has been investigated using total-variation (TV)
and sparsity regularizations. Unfortunately, existing SB-based
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methods for few-view CT image reconstruction, especially
for 3D CT, can be slow due to the challenging inner least-
squares problem with a highly shift-variant Hessian [3–5].
For example, [3] suggested solving the inner least-squares
problem of the SB method using up to 100 iterations of
the conjugate gradient (CG) method, that is, hundreds of
forward/back-projection pairs for a single outer-loop image
update! Although the forward/back-projection operations in
few-view CT are less time-consuming than in clinical CT,
using hundreds of forward/back-projection pair for a single
image update remains undesirable.

To solve the problem of the difficult inner least-squares
problem in SB methods, Ramani et al. [6] introduced an
additional auxiliary variable that separates the shift-variant and
approximate shift-invariant parts of the statistically weighted
quadratic data-fitting term so that one can find an appropriate
circulant preconditioner for the better-conditioned inner prob-
lem and solve the inner problem efficiently using the precon-
ditioned conjugate gradient (PCG) method. The acceleration is
significant in 2D CT [6]; however, in 3D CT, due to the cone-
beam geometry, it is much harder to find a good preconditioner
for the inner least-squares problem, and the method in [6] has
yet to achieve the same acceleration as in 2D CT.

Considering the same variable splitting scheme as in [6],
this paper proposes to solve X-ray CT image reconstruction
problem with TV or sparsity regularization using a linearized
augmented Lagrangian (AL) method [7, 8] that replaces the
difficult inner least-squares problem by a simple majorization-
minimization procedure (a gradient descent that guarantees
monotone decreasing of the cost value) and more importantly,
is suitable for ordered-subsets (OS) [9] acceleration. For
instance, suppose M ordered subsets are used for acceleration.
The proposed splitting-based OS algorithm takes roughly
1/M forward/back-projection pair for a single image update!
Therefore, compared with existing SB methods, we perform
many more image updates in a given reconstruction time,
leading to faster convergence.

The remainder of the paper is organized as follows. Sec-
tion II introduces the problem formulation and derives the
proposed splitting-based OS algorithm for solving regluarized
least-squares problems. Section III considers solving few-
view X-ray CT image reconstruction problem with penalized
weighted least-squares (PWLS) criterion using the proposed
algorithm and reports the experimental results comparing a
linearized SB method with our method. Finally, we draw
conclusions in Section IV.
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II. PROPOSED METHOD

A. Split OS-LALM: OS-LALM with an additional split

Consider a regularized least-squares problem:

x̂ ∈ arg min
x∈Ω

{
1
2 ‖y −Ax‖22 + Φ(Θx)

}
, (1)

where A is the system matrix, y is the noisy measurement,
Θ is an analysis regularization matrix, Φ is some convex (and
possibly non-smooth) potential function, and Ω denotes the
convex set for a box constraint (usually the non-negativity
constraint) on x. For example, in (anisotropic) TV-regularized
image restoration problems, Θ is a finite difference matrix,
and Φ is an `1 norm, probably with some weighting. The
minimization problem (1) is non-trivial in general since Θ
might not be an identity matrix, and Φ can be non-smooth.
One typical way to solve this problem is to use the SB method
[2] that introduces an auxiliary variable for the vector Θx
and decomposes the convex optimization problem into a series
of simpler penalized least-squares problems. However, when
A′A is highly shift-variant, the SB method can be slow due
to the iterative inner updates.

To develop a faster algorithm, instead of solving (1) using
the SB method, we consider solving an equivalent constrained
minimization problem:

(x̂, û, v̂) ∈ arg min
x,u,v

{g(u) + Φ(v) + ιΩ(x)}

s.t. u = Ax,v = Θx (2)

using the linearized AL method [7, 8]:




x(k+1) ∈ arg min
x

{
ιΩ(x) + θ̆k

(
x; x(k)

)
+ φ̆k

(
x; x(k)

)}

u(k+1) ∈ arg min
u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}

v(k+1) ∈ arg min
v

{
Φ(v) + η

2

∥∥Θx(k+1) − v − e(k)
∥∥2

2

}

d(k+1) = d(k) −Ax(k+1) + u(k+1)

e(k+1) = e(k) −Θx(k+1) + v(k+1) ,
(3)

where g(u) , 1
2 ‖y − u‖22, ιΩ is the characteristic function of

the convex set Ω that handles the box constraint on x, d and e
are the scaled Lagrange multipliers of the split variables u and
v, respectively, and ρ > 0 and η > 0 are the corresponding AL
penalty parameters. The functions θ̆k

(
x; x(k)

)
and φ̆k

(
x; x(k)

)

are two separable quadratic surrogate (SQS) functions that
majorize the quadratic AL penalty terms

θk(x) , ρ
2

∥∥Ax− u(k) − d(k)
∥∥2

2
(4)

and
φk(x) , η

2

∥∥Θx− v(k) − e(k)
∥∥2

2
(5)

at x = x(k), respectively. Let L1 and L2 denote the maximum
eigenvalues of A′A and Θ′Θ, respectively, it follows that




θ̆k
(
x; x(k)

)

∝ ρ
2t1

∥∥x−
(
x(k) − t1A′

(
Ax(k) − u(k) − d(k)

))∥∥2

2

φ̆k
(
x; x(k)

)

∝ η
2t2

∥∥x−
(
x(k) − t2Θ′

(
Θx(k) − v(k) − e(k)

))∥∥2

2
,
(6)

where t1 , 1/L1 and t2 , 1/L2. The majorizations remove
the entanglement of x introduced by A and Θ, leading to
simple inner updates in (3) using proximal mappings.

As can be seen in (3), introducing an additional split variable
v only modestly changes the updates from the one-split
linearized AL iterates [7, 8]. Letting hk , ιΩ + φ̆k, the two-
split linearized AL iterates (3) become the one-split linearized
AL iterates with an iteration-dependent regularization term
hk, where the effect of hk is fully determined by the v-
and e-updates in (3)! Hence, we can easily rewrite the two-
split linearized AL iterates (3) to the two-split gradient-based
linearized AL iterates:



s(k+1) = ρ∇`
(
x(k)

)
+ (1− ρ) g(k)

x(k+1) ∈ prox(ρ−1t1)hk

(
x(k) −

(
ρ−1t1

)
s(k+1)

)

g(k+1) = ρ
ρ+1∇`

(
x(k+1)

)
+ 1

ρ+1g(k)

v(k+1) ∈ proxη−1Φ

(
Θx(k+1) − e(k)

)

e(k+1) = e(k) −Θx(k+1) + v(k+1) ,

(7)

where ` denotes the quadratic data-fitting term in (1), and
proxf denotes the proximal mapping of f defined as:

proxf (z) , arg min
x

{
f(x) + 1

2 ‖x− z‖22
}
. (8)

Since both ιΩ and φ̆k are separable, the x-update of the two-
split gradient-based linearized AL iterates (7) has a closed-
form solution:

x(k+1) =
[
x(k) − 1

ρL1+ηL2

(
s(k+1) + σ(k+1)

)]
Ω
, (9)

where [·]Ω denotes an operator that projects a vector onto Ω,
and

σ(k+1) , ηΘ′
(
Θx(k) − v(k) − e(k)

)
(10)

is the search direction attributed to the regularization term.
Finally, the two-split gradient-based linearized AL method
(7) is an extension of the one-split gradient-based linearized
AL method, so we can accelerate it by using OS and the
deterministic downward continuation approach proposed in
[7, 8]. For the OS version, we replace the gradients in (7)
with the subset gradients M∇`m for m = 1, . . . ,M , where
`1, . . . , `M are M smaller quadratic functions that satisfy
` = `1 + · · ·+ `M and the “subset balance condition” [9]:

∇`(x) ≈M∇`1(x) ≈ · · · ≈M∇`M (x) . (11)

When OS is used for acceleration, we call our proposed
algorithm split OS-LALM, by an analogy of the SB method.

B. Applications

In this paper, we consider a regularized least-squares prob-
lem with a general composite convex regularizer Φ(Θx).
As mentioned before, when Θ is a finite difference matrix
and Φ is a weighted `1 norm, (1) becomes a TV-regularized
image reconstruction problem. In this case, the v-update in
(7) can be solved efficiently uisng soft-thresholding, and the
constant L2 , λmax

(
Θ′Θ

)
= 4d, where d denotes the number

of neighbors we considered in the finite difference operator.
Furthermore, when Θ is the discrete framelet transform matrix
[10] and Φ is an `1 norm, (1) becomes a frame-based image
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reconstruction problem [11]. In this case, the v-update can
also be solved using soft-thresholding, and L2 = 1 because
the discrete framelet is a tight frame. In fact, the proposed
algorithm is even more general. For example, consider intro-
ducing one more split for the box constraint on x. In this
case, we can use non-separable (but probably tighter) quadratic
surrogate functions with non-diagonal (e.g., circulant) Hessian
matrices to majorize θk and φk in (3) because the additional
split variable takes care of the box constraint.

III. EXPERIMENTAL RESULTS

This section evaluates our proposed algorithm (7) using the
statistically weighted few-view X-ray CT image reconstruction
problem with TV regularization:

x̂ ∈ arg min
x∈Ω

{
1
2 ‖y −Ax‖2W + TV(x)

}
, (12)

where A is the system matrix of a CT scan, y is the noisy
sinogram, W is the statistical weighting matrix, and TV(·)
denotes an anisotropic TV regularization term. To solve (12)
using the proposed algorithm, we simply replace A and y
in (1) by the weighted forward projection operator W1/2A
and the weighted noisy sinogram W1/2y, respectively, and
let Θ , C denote a finite difference matrix and Φ denote a
weighted `1 norm.

Computing L1, the maximum eigenvalue of A′WA, is
sometimes impractical because the power iteration might take
hundreds of forward/back-projections for finding that number,
while the number changes with different weighting matrix
W, even for a fixed geometry. In practice, we simply use
L1 , diag{A′WA1} to construct the SQS of the quadratic
AL penalty term θk [7, 8]. This also provides voxel-dependent
step sizes for image updates in (9). One can also generalize L2

to a diagonal matrix L2 by considering a “weighted” quadratic
AL penalty term of the second split [12]. However, in this
paper, we just use L2 = 4d for simplicity.

We reconstructed a 512× 512× 122 image from an un-
dersampled chest axial CT scan. The size of the original
sinogram is 888× 64× 642 (half scan), and we uniformly
undersampled the number of projection views from 642 to 81
(about 12.6% of projection views are used for reconstruction).
Instead of using the standard SB-based method [3], we used
a linearized SB method as the baseline reconstruction method
because it has no iterative inner updates and is much easier for
imposing box constraints on x. Let OS-LALM-M -ρ-η denote
the proposed algorithm using M subsets with AL penalty
parameters ρ and η, where “ρ = c” denotes the deterministic
downward continuation [7, 8]. When ρ = 1, the proposed
algorithm happens to be the linearized SB method [13].

The number of subsets M is varied from 1 to 5 for
investigating different amounts of OS acceleration. The AL
penalty parameter η was hand-tuned for fastest convergence
and remained the same throughout the experiment for fair
comparison. Intuitively, η determines the step sizes for image
updates in (9), especially when the deterministic downward
continuation approach is used. Empirically, choosing ηL2 that
is about 2% to 10% of L1 (or the median of the diagonal en-
tries of L1) usually exhibits fast convergence of the proposed
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Fig. 1: Chest CT: cropped images [displayed from 800 to
1200 HU] from the central transaxial plane of (a) the initial
FBP image x(0) and the reference reconstruction x?, and (b)
the reconstructed images x(100) at the 100th iteration using
the proposed algorithm with different AL penalty parameters.
When ρ = 1, the proposed algorithm reverts to the linearized
SB method.

algorithm. Finally, the total number of iterations is set to be
100. In this case, 100 undersampled forward/back-projection
pairs, about 13 full forward/back-projection pairs, are used for
the reconstruction.

Figure 1 shows the initial FBP image and the almost con-
verged reference reconstruction together with the reconstructed
images of the proposed algorithm with different parameters.
As can be seen in Figure 1(a), the initial FBP image exhibits
strong streak artifacts due to the undersampled projection
views, and these streak artifacts are reduced significantly in
the reference reconstruction by applying TV regularization.
Figure 1(b) demonstrates the effectiveness of our proposed
algorithm. With the deterministic downward continuation (i.e.,
ρ = c), the proposed algorithm shows less streak artifacts in
the reconstructed images, and the reduction is more effective
for larger M . Figure 2 shows the convergence rate curves
(RMS differences between the reconstructed image x(k) and
the reference reconstruction x? as a function of iteration) of
the proposed algorithm with different AL penalty parameters.
As can be seen in Figure 2, the proposed algorithm shows
substantial acceleration with continuation and ordered subsets.
For example, the RMS difference of OS-LALM-5-c-η reaches
10 HU within 50 iterations, while the linearized SB method
(OS-LALM-1-1-η) is still far away from the optimum (about
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Fig. 2: Chest CT: RMS differences between the reconstructed
image x(k) and the reference reconstruction x? as a function
of iteration using the proposed algorithm with different AL
penalty parameters. When ρ = 1, the proposed algorithm
reverts to the linearized SB method.

90 HU in RMS difference). Finally, note that algorithms
with OS typically are not convergent. The algorithms enter
a “limit cycle” in which updates stop approaching the opti-
mum. However, as can be seen in Figure 2, the cyan curve
(OS-LALM-5-c-η) is below 5 HU at the 100th iteration and
keeps decreasing after that. This demonstrates the gradient
error tolerance of our proposed splitting-based OS algorithm.

IV. CONCLUSION

In this paper, we proposed a splitting-based ordered-subsets
(OS) algorithm, split OS-LALM, for solving weighted least-
squares X-ray computed tomography (CT) image reconstruc-
tion problems with a general composite convex regularizer. To
demonstrate our proposed algorithm, we investigated solving a
few-view X-ray CT image reconstruction problem with total-
variation (TV) regularization. Experimental results showed
that the proposed algorithm exhibits fast convergence rate
and excellent gradient error tolerance when OS is used for
acceleration. The same technique can also be applied to 3D
clinical CT with complicated (e.g., non-smooth) regularization
terms.
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