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ABSTRACT

The augmented Lagrangian (AL) optimization method has drawn more attention recently in imaging applications
due to its decomposable structure for composite cost functions and empirical fast convergence rate under weak
conditions. However, for problems, e.g., X-ray computed tomography (CT) image reconstruction, where the
inner least-squares problem is challenging, the AL method can be slow due to its iterative inner updates. In this
paper, using a linearized AL framework, we propose an ordered-subsets (OS) accelerable linearized AL method,
OS-LALM, for solving penalized weighted least-squares (PWLS) X-ray CT image reconstruction problems. To
further accelerate the proposed algorithm, we also propose a deterministic downward continuation approach
for fast convergence without additional parameter tuning. Experimental results show that the proposed algo-
rithm significantly accelerates the “convergence” of X-ray CT image reconstruction with negligible overhead and
exhibits excellent gradient error tolerance when using many subsets for OS acceleration.

1. INTRODUCTION

The augmented Lagrangian (AL) method (including its alternating direction variants)' ™ is a powerful tech-
nique for solving regularized inverse problems using variable splitting. In X-ray computed tomography (CT)
image reconstruction, the AL method is used to decompose the original CT problem into several easier and
better-conditioned inner minimization problems so that one can accelerate convergence using appropriate pre-
conditioners.®” Experimental results showed that the acceleration is significant in 2D CT;% however, in 3D CT,
due to different geometries, it is more difficult to construct a good preconditioner for the inner least-squares
problem, and one has yet to achieve the same acceleration as in 2D CT. In comparison, the ordered-subsets
(0S) algorithm® is a gradient method with a diagonal preconditioner/majorizer that uses somewhat conservative
step sizes but is more easily applicable to different geometries. Furthermore, by grouping the projections into
M ordered subsets that satisfy the “subset balance condition” and updating the image incrementally using the
M subset gradients, the OS algorithm effectively runs M times as many image updates per outer iteration as
the standard gradient descent method, thus leading to M times acceleration at least in early iterations. In this
paper, we focus on solving regularized (weighted) least-squares problems using a linearized variant of the AL
method? '? and show that the linearized AL method, in this case, can be intepreted as a gradient method and
hence, is feasible for OS acceleration.

2. METHODS
2.1 OS-LALM: an OS-accelerable splitting-based algorithm

Consider a regularized least-squares image reconstruction problem:
xe argmin{\ll(x) £1 ||y_AX||§+h(X)} , (1)

where A is the system matrix, y is the noisy measurement, and h is a convex (and possibly non-smooth)
regularization term. Let ¢(x) denote the quadratic data-fitting term. We further assume that ¢ is suitable for
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OS acceleration; that is, ¢ can be decomposed into M smaller quadratic functions #q,...,¢,; that satisfy the

“subset balance condition”:®

Instead of solving (1) using the (proximal) gradient method or its OS variants, we consider solving an equivalent
constrained minimization problem:'?

(%x,10) Gargmin{%Hqu—}—h(x)} st.u=Ax-y (3)
x,u

using the alternating direction AL method that alternatingly minimizes the scaled augmented Lagrangian:
Lalx,u,dip) £ 5 ully +h(x) + §|Ax —y —u—dl|; (4)
with respect to x and u, followed by a gradient ascent of d, yielding the following AL iterates:

x(+1) € argmin {h(x) +2Ax—y —u® - d(k)”i}

a1 € argmin {§ Jul} + [ Ax*+D —y —u - a®|;} (5)

dE+1) — qk) _ (Ax(k+1) —y)+ ulk+D)
where d is the scaled Lagrange multiplier of the split variable u, and p > 0 is the corresponding AL penalty
parameter. We choose this particular split (3) because u (a split variable for the residual) is almost the gradient
of £ (Vl(x) = A’ (Ax —y)), i.e, a back-projection of the residual. Note that for any algorithm that can be

accelerated using the approximation (2), all the update iterates should depend only on the gradient of ¢, just
like any gradient method!

Before continuing the derivation of our proposed algorithm, let’s take a closer look at (5). Since £ is quadratic,
the u-update in (5) is linear and has the following simple closed-form solution:

u(k+1) _ prl((AX(kJrl) o y) o d(lc)) ) (6)
Furthermore, combining (6) with the d-update in (5) yields the identity:
ul D) = _pq(k+1) (7)

if we initialize d as d(®) = —p~'u(®. Substituting (6) and (7) into (5) leads to the simplified AL iterates:

x(k+1) ¢ argmin {pflh(x) +i[[Ax—y+(p7' - 1) u(’“)Hz}

u(k+1) = ﬁ(Ax(kH{L) — y) _|_ ﬁu(k) .

If we “solve” the inner minimization problem using the OS algorithm, it becomes the AL-OS algorithm.'?

As mentioned in Section 1, the main problem of the AL method is the non-trivial inner update, i.e., the
x-update in (8) that involves the Hessian A’A. To overcome this problem, we propose to further “linearize”
the quadratic term (i.e., the quadratic penalty of the scaled augmented Lagrangian) in the inner minimization
problem with respect to x(*) and add an additional quadratic proximal penalty, leading to a type of the linearized
AL method.”'? Specifically, we majorize the quadratic term in (8) by

Ax =y + (' — ) u® |2 < G+ XA (AxB —y + (o — u®) 4 E[x—xBF, ()

where C}, is a constant that depends only on x*) and u®), L is the spectral radius of A’A, and the equality
holds if x = x(¥). The majorization (9) removes the entanglement of x introduced by the system matrix A and
leads to the following simplified linearized AL iterates:

{x<k+1> € prox -1, (xF) — tA' (Ax®) —y + (p=1 = 1) uV)) (10)

k+1) _ k+1 1 k
D) = _on (Ax(H) ) 4 La()
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where t £ 1/L serves as a step size, and prox¢(z) denotes the proximal mapping of ¢ defined as
. 2
prox,(z) £ argmin { 6(x) + & |x — 23} . (11)

It is trivial to generalize L to any positive semi-definite matrix G = A’A, e.g., the diagonal majorizer Ggiag =
diag{|A| [A|1} used in most OS-based algorithms.®!%'> When G = A’A, the linearized AL method reverts
to the standard AL method (8). Now, the net computational complexity of updates in (10) reduces to one
multiplication by A, one multiplication by A’, and one proximal mapping of h that usually can be solved non-
iteratively or solved iteratively without using A or A’. Note that the linearized AL method (also known as the
split inezact Uzawa method in the image processing literature'®'%) converges for any p > 0, even with inexact
updates.” 1% Therefore, the simplified linearized AL method (10) is a convergent algorithm for any p > 0.

To enable OS acceleration, observe that the x-update in (10) depends only on Vﬁ(x(k)) = A’(Ax(k) — y)

and A’u® | where the latter is a back-projection of the split residual. Let g £ A’u denote the split gradient of
¢ and introduce an auxiliary variable s. We rewrite (10) as the following OS-accelerable linearized AL iterates:

xEHD € prox,-1p;, (x*) — (p~1t) sF) (12)

The net computational complexity of (12) per iteration becomes one gradient evaluation of ¢ and one proximal
mapping of h. We can intepret (12) as a generalized proximal gradient descent of ¥ with step size p~'t and
search direction s**1) | a linear average of the gradient and the split gradient of £. A smaller p leads to a larger
step size. When p = 1, (12) is simply the proximal gradient method or the iterative shrinkage/thresholding
algorithm (ISTA).?° In other words, by using the linearized AL framework, we can arbitrarily increase the step
size of the proximal gradient method by decreasing p, thanks to the simple p-dependent correction in (12)!

To use OS, we replace V¢ with M'V/,, in (12) using the approximation (2) and incrementally perform (12)
for M times as one outer iteration, leading to the proposed algorithm with OS acceleration (OS-LALM):

gkm+1) _ pMV Ly, (X(k,m)) +(1— p)g(k,m)
x(km+1) o PLOX(, 19 (X(k,m) _ (pflt) S(k,m+1)) (13)
g(k,m-‘rl) — ﬁMvngrl (X(k,m-l-l)) + p%g(k,m)

with boundary conditions ¢(¥"M+1) = c(k+1) = c(F+1.1) for ¢ € {s,x,g} and £3;11 = £;. Like typical OS-based
algorithms, the proposed algorithm (13) is convergent when M = 1, i.e., (12), but is not guaranteed to be
convergent for M > 1. When M > 1, updates generated by OS-based algorithms enter a “limit cycle” in which
updates stop approaching the optimum. More importantly, some noise-like artifacts might be observed in the
reconstructed image when using too many subsets for OS acceleration. Section 3 investigates how M affects the
stabilities of different OS-based algorithms.

2.2 Deterministic downward continuation

One drawback of the AL method with a fixed AL penalty parameter p is the difficulty of finding the value that
provides the fastest convergence. Intuitively, a smaller p is better because we can have a larger step size. However,
when the step size is too large, one can encounter overshoots and oscillations that slow down the convergence
rate at first and when we approach the optimum. Thus, an iteration-dependent py, i.e., a continuation approach,
is desirable. For example, the classic continuation approach suggests increasing p as the algorithm proceeds
so that the previous update can serve as a warm start for the following worse-conditioned but more penalized
inner minimization problem.?! In this paper, unlike classic continuation approaches, we consider a downward
continuation approach. The intuition is that, for a fixed p, the step length ||x(’“‘1) —x(*) H is typically a decreasing
sequence because the gradient norm vanishes as we approach the optimum, and an increasing sequence py (i.e.,
a diminishing step size) would aggravate the shrinkage of step length and slow down the convergence rate. In
contrast, a decreasing sequence pj can compensate the shrinkage and accelerate convergence.
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Intuitively, pi cannot decrease too fast; otherwise, the soaring step size might make the algorithm unstable
or even divergent. For instance, py decreasing as O(1/k) provides great acceleration while still guarantees
convergence (for the one-subset case) in practice; however, pi decreasing as O(l / k;2) seems to be too aggressive
and might not lead to convergence (or a small limit cycle when using OS for acceleration) although the convergence
rate is very fast in early iterations. In this paper, we considered a decreasing sequence:

| if1=0
= 14
4 w1l (72112)2 , otherwise, (14)

where [ is a counter that starts from zero and increases by one. Let
£(k) 2 (g — Vo(xEH)) (Ve(xEH) - ve(xM)) (15)

denote a restart indicator for the one-subset version (12) of our proposed algorithm and reset ! to zero whenever
&(k) > 0. For the M-subset version (13), we simply replace the gradients with the gradient approximations
and check the restart condition every inner iteration. This approach works well in practice for CT. We leave its
detailed derivation and discussion in the upcoming work.'® Note that p; does not change for different A’s. The
adaptive restart condition takes care of the dependence on A. That is why we call this approach the deterministic
downward continuation approach.

3. RESULTS

In this section, we evaluated our proposed algorithm using the statistically weighted X-ray CT image reconstruc-
tion problem:

N . 2
% € argmin {1 ly — Ax|l}y +R(x)} . (16)

where A is the system matrix of a CT scan, y is the noisy sinogram, W is the statistical weighting matrix, R
is an edge-preserving regularizer, and {2 denotes the convex set for a box constraint (usually the non-negativity
constraint) on x. To solve (16) using the proposed algorithm, we use the following substitution:

A — WI/2A
Yy — W1/2y (17)
h—R+q,

where (¢ denotes the characteristic function of a convex set C. Thus, the inner minimization problem in (12)
and (13) becomes a constrained denoising problem. In our implementation, we solve the inner constrained
denoising problem using n iterations of the fast iterative shrinkage/thresholding algorithm (FISTA)?? start-
ing from the previous update as a warm start. Throughout the experiment, we use a diagonal majorizer
Giag = diag{A’WA1} to majorize the quadratic penalty in the scaled augmented Lagrangian.® The naming
conventions are as follows: OS-SQS-M denotes the OS algorithm® with M subsets; OS-Nes83-M denotes the
OS+momentum algorithm'* based on Nesterov’s first fast gradient method?® with M subsets; OS-Nes05- M
denotes the OS+momentum algorithm'® based on Nesterov’s third fast gradient method?* with M subsets;
OS-LALM-M-p-n denotes the proposed algorithm (13) with M subsets, a fixed AL penalty parameter p, and
n FISTA iterations for solving the inner constrained denoising problem; OS-LALM-M-c-n denotes the pro-
posed algorithm (13) using the deterministic downward continuation approach (14) with M subsets and n FISTA
iterations for solving the inner constrained denoising problem. When n = 1, i.e., with a single gradient descent
for the constrained denoising problem, all algorithms listed above have the same computational complexity (one
forward /back-projection and M gradient evaluation of the regularization term per iteration), so comparing the
convergence rate as a function of iteration is fair. In this experiment, we reconstructed a 512 x 512 x 109 image
from a shoulder region helical CT scan, where the sinogram has size 888 x 32 x 7146 and pitch 0.5, provided by
GE Healthcare. We tested our proposed algorithm with two different values of M (20 and 40) and three different
values of p (0.2, 0.1, and 0.05).
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Figure 1: RMS differences between the reconstructed image x(*) and the reference reconstruction x* as a function
of iteration using OS-based algorithms with (a) 20 subsets and (b) 40 subsets, respectively. The dotted lines
show the RMS differences using the OS algorithm with one subset as the baseline convergence rate.

Figure 1 shows the convergence rate curves (RMS differences between the reconstructed image x(*) and
the reference reconstruction x* as a function of iteration) of different OS-based algorithms. As can be seen in
Figure 1, the proposed algorithm accelerates the convergence rate of the OS algorithm remarkably by exploiting
the linearized AL framework. As mentioned in Section 2.1, a smaller p can provide greater acceleration due to
the increased step size. However, too large step sizes can cause overshoots in early iterations. For example, the
proposed algorithm with p = 0.05 shows slower convergence rate in first few iterations but decreases more rapidly
later. This trade-off can be overcome by using our proposed deterministic downward continuation approach.
Furthermore, comparing to OS4+momentum algorithms, our proposed algorithm with deterministic downward
continuation shows not only the same fast convergence rate for small number of subsets (M = 20), but the
much better gradient error tolerance when using many subsets (M = 40) for OS acceleration. When the number
of subsets increases, fewer views in a subset are used to approximate the full gradient of £. This introduces
errors to the search directions in OS-based algorithms and makes the algorithms unstable. For instance, the
OS+momentum algorithm based on Nesterov’s first fast gradient method with 40 subsets (the purple curve
in Figure 1(b)) performs so bad that the RMS difference starts increasing after the 10th iteration. The other
OS+momentum algorithm works better but still has higher RMS difference in the end. As can be seen in
Figure 1, the proposed algorithm with deterministic downward continuation reaches the lowest RMS differences
(lower than 1 HU) within only 30 iterations, i.e., 30 forward/back-projection pairs!

Figure 2 shows the cropped images from the central transaxial plane of the initial FBP image x(?), the recon-
structed images at the 30th iteration x% using different OS-based algorithms, and the reference reconstruction
x*. As can be seen in Figure 2, the reconstructed images using OS+momentum algorithms and our proposed
algorithm look sharp and less noisy, while other reconstructed images using the OS algorithm exhibit residual
streak artifacts. To see the difference between OS+momentum algorithms and our proposed algorithm, Figure 3
shows the difference image, i.e., x(39) —x*, for these OS-based algorithms. We can see that the difference images
look more uniform and less structured for our proposed algorithm; however, the OS4+momentum results exhibit
high frequency structured noise and strong ripples, especially when using many subsets for OS acceleration. This
demonstrates the better gradient error tolerance of our proposed algorithm when OS is used, probably due to
the way we compute the search direction. As can be seen in (13), our proposed algorithm computes the search
direction as an average of all previous gradient approximations using all subsets, while the OS+momentum
algorithms compute their search directions using only the current subset. The average process in our proposed
algorithm might mitigate the gradient error accumulation and provide better and more stable reconstructions.
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Figure 2: Cropped images (displayed from 800 to 1200 HU) from the central transaxial plane of the reconstructed
image at the 30th iteration x(3) using OS-based algorithms with (a) 20 subsets and (b) 40 subsets, respectively.
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Figure 3: Cropped images (displayed from —30 to 30 HU) from the central transaxial plane of the difference
image at the 30th iteration x(®%) — x* using OS-based algorithms with 20 and 40 subsets.
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4. CONCLUSION

In this paper, we proposed an OS-accelerable splitting-based algorithm, OS-LALM, for solving penalized weighted
least-squares X-ray CT image reconstruction problems using a linearized AL framework. To further accelerate
the proposed algorithm, we also proposed a deterministic downward continuation approach that avoids tedious
parameter tuning for fast convergence. Experimental results showed that our proposed algorithm significantly
accelerates the “convergence” of X-ray CT image reconstruction with negligible overhead and greatly reduces
the OS artifacts in the reconstructed image when using many subsets for OS acceleration.
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