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ABSTRACT
We present group coordinate descent algorithms for edge-preserving image denoising that are particularly well-suited to
the graphics processing unit (GPU). The algorithms decouple the denoising optimization problem into a set of iterated,
independent one-dimensional problems. We provide methods to handle both differentiable regularizers and the absolute
value function using the majorize-minimize technique. Specifically, we use quadratic majorizers with Huber curvatures for
differentiable potentials and a duality approach for the absolute value function. Preliminary experimental results indicate
that the algorithms converge remarkably quickly in time.

Keywords: denoising, group coordinate descent, GPU, duality, absolute value, anisotropic total variation, majorize-
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1. INTRODUCTION
Consider the image denoising problem

x̂ = argmin
x≥0

{
J(x) =

1

2
||x− y||2W + R(x)

}
, (1)

with noisy data y ∈ RN , diagonal matrix of nonnegative weights W, and edge-preserving regularizer R:

R(x) =

D∑
d=1

βd

N∑
k=1

κdkφ([Cdx]k). (2)

We focus on the nonnegativity-constrained minimization problem 1 because of its relevance to x-ray CT image recon-
struction problems. However, the methods presented here are easily simplified for the unconstrained case.

Each Cd is a first-order finite difference matrix in the “dth direction.” These matrices are circulant or Toeplitz and
have a band of +1 values along the diagonal and a band of −1 values along an off-diagonal. A two-dimensional denoising
problem may use D = 2 to penalize horizontal and vertical differences or D = 4 to penalize the diagonal differences
as well. In three dimensions, this becomes D = 3 for the cardinal directions and D = 13 to include all neighbors. The
algorithm here can be trivially extended to higher-order differences, i.e., difference matrices Cd with more or different
bands, but we restrict discussion to the first-order difference case here.

The potential function φ is positive, even and convex. Potential functions other than the obvious quadratic choice
φ(t) = 1

2 t
2 are used to avoid over-smoothing edges in the reconstructed image. In this paper, we will consider two classes

of potential functions:

1. potential functions that are even, convex, positive and satisfy Huber’s majorizer conditions; and

2. the absolute value function, φ(t) = |t|, which is used in anisotropic total-variation regularization.4
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Because the absolute value function is not differentiable at the origin, it requires special treatment. Many convex potential
functions fall into the first category.

To illustrate an important property of this cost function, we rewrite the regularizer:

R(x) =
1

2

N∑
j=1

∑
k∈Nj

κkjβkjφ(xj − xk), (3)

whereNj is the set of indices in the neighborhood of the jth index. As is conventional, we let the neighborhood relationship
be symmetric: if k ∈ Nj , then j ∈ Nk. This version “double-counts” each difference, hence the 1

2 factor. Consider solving
for the jth pixel of x while holding all the rest constant:

argmin
α≥−xj

J(x + αej) = argmin
α≥−xj

wj
2

(xj + α− yj)2
+
∑
k∈Nj

κkjβkj
2

φ(xj + α− xk).

The only terms required are xj , wj , yj , some regularizer weights, and the pixels in Nj . Put another way, the cost
function J is in some sense Markovian: pixels that are not neighbors are marginally independent. We will exploit this
structure below.

The rest of this paper is organized as follows. Section 2 describes our proposed coordinate descent algorithm. Sec-
tions 2.1.1 and 2.1.2 describe the one-dimensional problems for differentiable potential functions and the absolute value
function, respectively. Some experimental results are given in Section 3, and Section 4 contains some concluding remarks.

1.1 Notation
We consider images with N = NxNy pixels. Variables in bold are vectors. The jth element of a vector is [x]j or xj .
For simplicity, this paper will deal with two-dimensional images, though the extension to three dimensions is conceptually
trivial. Sometimes it will be convenient to consider the jth element of a vector in nonnegative integral coordinates, (p, q) ∈
{0, . . . , Nx − 1}×{0, . . . , Ny − 1}. In those cases, it is more convenient to number coordinates from zero instead of from
one:

xp,q = xp+qNx+1, (4)

and conversely

xj = x(j−1) modNx, b(j−1)/NxcNx
, (5)

where b·c is truncation.

Iteration number will be indexed by n, and written as a superscript in parentheses, e.g., x(n). Subiterations will be
similarly indicated using the letter m.

2. GROUP COORDINATE DESCENT
We divide x into K disjoint groups; x1, . . . ,xK :

x =

K∑
k=1

Skxk, (6)

where xk ∈ RNk ,
∑K
k=1Nk = N , and Sk ∈ RN×Nk is formed from a subset of the columns from the N × N identity

matrix. We can write the cost function J(x) as a function of these grouped variables:

J(x) = J(x1, . . . ,xK). (7)
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Group coordinate descent algorithms solve the image denoising problem (1) by iteratively optimizing over each of the
K groups while holding the others constant.2, 5 That is, in the nth (outer) iteration, loop over group index k and perform
the following optimization:

x
(n+1)
k = argmin

xk≥0
J
(
x

(n+1)
1 , . . . ,x

(n+1)
k−1 ,xk,x

(n)
k+1, . . . ,x

(n)
K

)
. (8)

We will assign pixels to groups in a checkerboard-like pattern. We separate the pixels into groups that are independent
with respect to the cost function; i.e., no group contains pixels that are neighbors to one another. Let Sk be the set of pixel
indices in the kth group, so the columns of Sk are the unit vectors ej for j ∈ Sk. For a two-dimensional problem, with
first-order differences, K = 4. Let kp = k mod 2 and kq = bk/2c. Then Sk is

Sk = {(kp + 2r, kq + 2s) : r, s are nonnegative integers}. (9)

2.1 Group update subproblem
Consider now the task of performing an update to the kth group (8):

x
(n+1)
k = argmin

xk≥0

∑
m∈Sk

wm
2

([xk]m − ym)
2

+
∑
j∈Nm

βjmκjm
2

φ([xk]m − xj)

.
Recall that we have designed Sk so Nm ∩ Sk = ∅ for all m ∈ Sk. Consequently, the sum over Sk in (10) is separable:

x
(n+1)
k = argmin

xk≥0

∑
m∈Sk

Ψ(n)
m ([xk]m); (10)

Ψ(n)
m (x) =

wm
2

(x− ym)
2

+
∑
j∈Nm

βjmκjm
2

φ(x− xj). (11)

Each of the Ψ
(n)
m is a one-dimensional function with the following form:

Ψ(x) =
w

2
(x− y)

2
+
∑
j∈N

βjφ(x− xj), (12)

where we have dropped subscripts and consolidated terms for simplicity. Due to separability, each coordinate of xk can be
updated independently (and thus simultaneously) by solving the corresponding one-dimensional problem.

2.1.1 Differentiable potential functions

For differentiable φ, we use quadratic majorizers with Huber’s well-known curvatures [7, p. 185]:

Φ(x) =
w

2
(x− y)

2
+
∑
j∈N

βj

(
g

(m)
j x+

c
(m)
j

2

(
x− x(m)

)2
)
, (13)

g
(m)
j = φ′

(
x(m) − xj

)
, (14)

c
(m)
j = ω

(
x(m) − xj

)
=

g
(m)
j∣∣x(m) − xj

∣∣ . (15)

This one-dimensional quadratic surrogate is solved in closed form, yielding the update

x(m+1) = max

0,
w · y +

∑
j∈N βj

(
c
(m)
j x(m) − g(m)

j

)
w +

∑
j∈N βjc

(m)
j

. (16)
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2.1.2 The absolute value function

If φ(t) = |t|, the Huber curvature is undefined at t = 0. Many authors get around this problem by corner rounding,
substituting an approximation, e.g., φ(t) =

√
t2 + ε ≈ |t|, for the absolute value function. This feels disingenuous: why

substitute a differentiable function for the absolute value at the last moment instead of using it in the problem formulation?

Another approach is to apply the Huber curvatures optimistically, assuming that for all k ∈ Nj , xk 6= xj and thus
the Huber curvatures are bounded. In12 a probabilistic argument is presented that this is the case for noisy natural images.
However, the motivation of using a strong regularizer like total variation is often exactly to force adjacent pixel values to be
equal. In medical imaging, pixels outside the patient often end up being exactly uniformly zero (due to the nonnegativity
constraint and regularizer) so many neighbors have identical values. In problems with particularly high regularizer strength
(i.e., β large), uniformity will certainly be reached. Regardless, we are unsettled by any algorithm that could have numerical
issues when neighboring pixel values are identical or nearly identical. Therefore we present a different approach that can
work with absolute value potential functions exactly without any approximations.

The absolute value function is majorized by the following version of the Huber function:

h(t; δ) =

{
1
2δ

(
t2 + δ2

)
, |t| < δ,

|t|, |t| ≥ δ,
(17)

for any δ ≥ 0. When δ = 0, this reduces to the absolute value function. We use h(t; δ) to majorize the one-dimensional
cost function at x(n):

Φh(x) ,
w

2
(x− y)

2
+
∑
j∈N

βjh
(
x− xj ;

∣∣∣x(n) − xj
∣∣∣). (18)

The Huber function can also be written implicitly, which motivates a second majorization by expanding the dual variable
domain:

h(t; δ) = max
γ∈[−1,1]

{
s(t, γ; δ) = γt− δ

2

(
γ2 − 1

)}
(19)

≤ max
γ∈Ω

s(t, γ; δ), (20)

where Ω is a convex, compact subset of R with [−1, 1] ⊂ Ω. We describe Ω in more detail below.

With this expanded-domain Huber-like function , we form the new majorizer Φm:

Φm(x) , max
γ∈ΩD

S(x;γ = (γ1, . . . , γD)) (21)

S(x;γ) =
w

2
(x− y)

2
+
∑
j∈N

βjs
(
x− xj , γj ;

∣∣∣x(n) − xj
∣∣∣). (22)

An example of Ψ, Φh and Φm is given in Figure 1. Observe that at the solution x(n) = 1, both majorizers have a
nondifferentiable kink, as does the cost function Ψ.

Eliminating γ from (22) produces a quadratic with curvature that goes to infinity as x(n) → xj . It might seem that we
have gotten nowhere. Fortunately, minimizing (22) has a convenient dual problem. Instead of solving

x(n+1) = argmin
x≥0

max
γ∈ΩD

S(x;γ), (23)

we reverse the order of the minimization and maximization operations:

x(n+1) = max {x(γ∗), 0}, (24)

x(γ) = argmin
x

S(x;γ) = y − 1

w
β′γ, (25)

γ∗ ∈ argmax
γ∈ΩD

S(x(γ);γ), (26)
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Figure 1: Illustrations of Ψ involving the absolute value function and its majorizers Φh and Φm. The example has three
xj at −1.5, 1 and 1.5; y = 0. On the left the majorizers are generated at the non-optimal point 2, and on the right at the
optimum 1.

where β = vecj{βj}. Let D = diagj
{
βj
∣∣x(n) − xj

∣∣} and Λ = diagj{y − xj}. Plugging (25) into (26) yields the
following quadratic concave optimization problem:

γ∗ ∈ argmax
γ∈ΩD

−1

2
||γ||2D+ 1

wββ′ + γ′Λβ. (27)

We choose Ω = [−R,R] with

R = max

1,

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
(

D +
1

w
ββ′

)+

Λβ︸ ︷︷ ︸
γpinv

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∞

. (28)

This selection for Ω has two important properties:

1. clearly [−1, 1] ⊂ Ω, which makes the inequality in (2.1.2) valid; and

2. the pseudoinverse γpinv ∈ ΩD is a solution to (27), so we can relax the dual problem to an unconstrained optimization:

γ∗ ∈ argmax
γ

−1

2
||γ||2D+ 1

wββ′ + γ′Λβ. (29)

When D is full rank, (29) can be solved trivially using the matrix inversion lemma. When D is rank-deficient, i.e., when
x(n) = xj for at least one j, finding the solution requires either an iterative algorithm or a relatively computationally ex-
pensive direct method using, e.g., an eigenvalue decomposition or the “matrix pseudoinverse lemma”.8 In the experiments
below, we ran two iterations of the following minorize-majorize algorithm:

γ(m+1) = γ(m) +

(
Dε +

1

w
ββ′

)−1(
−
(

D +
1

w
ββ′

)
γ(m) + Λβ

)
, (30)

where Dε is a diagonal matrix with [Dε]dd = max {ε, [D]dd} for a small ε > 0. This recursion can be efficiently
implemented using the matrix inversion lemma.
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(a) Original image (b) Noisy (c) Denoised reference
Figure 2: Original, noisy and reference images for the experiments in Section 3.1.

3. EXPERIMENTS
We present two experiments below. One experiment uses a standard test image and an everywhere-differentiable potential
function, and the second experiment uses a larger three-dimensional test image with the absolute value function. All
experiments were run on a server with 48 GB of RAM and an NVIDIA Tesla C2050 GPU. All calculations were performed
on the GPU.

3.1 Small image denoising problem
We corrupted the 512× 512-pixel cameraman standard test image (pixel values 0− 255 gray levels) with additive white
Gaussian noise with σ = 20 gray levels. We posed the denoising problem (1) with W = I, and the eight-neighbor (D = 4)
edge preserving regularizer with βd = 10, κdk = 1 for all d, k, and the Fair potential function,

φFair(x) = δ2(|x/δ| − log (1 + |x/δ|)), (31)

with δ = 10 gray levels. The Fair potential is differentiable everywhere and admits a closed-form ISTA-like shrinkage
update. We generated a reference image by running 1,024 iterations of a split Bregman algorithm.6 Figure 2 shows the
original image, noise-corrupted data and reference image.

We ran conjugate gradients (CG), a split Bregman algorithm1 (SB), a majorize-minimize algorithm with separable
quadratic surrogates3 (SQS), the SQS algorithm with Nesterov’s acceleration11 (SQS-N), and the proposed group coor-
dinate descent (GCD) algorithm and recorded the root mean square difference (RMSD) to the reference image at each
iteration. Plots of RMSD as a function of iteration and time are given in Figure 3.

The results illustrate the trade-off between per-iteration accuracy and computational complexity. The algorithms with
comparatively low computational complexity per iteration (SQS, SQS-N and GCD) converge more quickly in time than the
more complex CG and split Bregman algorithms. We expect that in problems involving larger images, SB and CG would
perform better. The GCD algorithm also converges more quickly than SQS-N in early iterations, though SQS-N overtakes
GCD in later iterations. This early-iteration performance, combined with the fact that GCD requires only one copy of the
image x(n) (as opposed to the multiple copies that Nesterov’s momentum requires), allow GCD to converge more quickly
than SQS-N in time.

3.2 Three-dimensional denoising problem
To illustrate the proposed algorithm’s behavior on a larger problem, we generated a 512× 512× 256-pixel instance of the
XCAT phantom,13 a popular test image in medical imaging. The image is piecewise continuous with pixel values from
0−1700 gray levels, and interesting features in the 800−1200 gray-level window. We corrupted the phantom with additive
white Gaussian noise with σ = 20 gray levels, and posed the denoising problem as above, using all 26 (three-dimensional)
pixel neighbors, βd = 8, and the absolute value potential function. Figure 5 shows the central slices of the original, noisy
and reference images.
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Figure 3: Convergence plots for the experiments in Section 3.1. The proposed GCD algorithm behaves competitively with
SQS-N in per-iteration convergence, and converges very rapidly in time.

(a) Original image (b) Noisy (c) Denoised reference
Figure 4: Central slices of original, noisy and reference images for the experiments in Section 3.2, displayed on the 800 -
1200 gray level window.

Although the noise in CT reconstruction is not additive white Gaussian, image-domain Gaussian-noise denoising prob-
lems (1) do appear in variable-splitting-based CT reconstruction algorithms.9, 10 Solving these problems efficiently is an
important “inner step” in splitting-based CT reconstruction algorithms.

The absolute value function is not differentiable, so we used a corner-rounded SQS algorithm for comparison here.
Instead of using the Huber curvature for the jth difference, we used

c̃
(n)
j =

1

ε+ |x− xj |
, (32)

with ε = 10−2. A quadratic “surrogate” with curvature c̃(n)
j does not lie above the absolute value function near the origin,

so this substitution invalidates the majorization property of the SQS algorithm. However, ad hoc modifications like this are
common enough in practice to merit consideration.

We ran the SQS algorithm with corner rounding (SQS-ε), SQS with Nesterov’s acceleration (SQS-ε-N), the split Breg-
man algorithm (SB) and our proposed GCD algorithm. Figure 5a plots the RMSD of each algorithm over time. Due to
the large disparity in the computational cost per iteration (see Table 1), we provide only a versus-time plot. Though SQS-
ε-N converges rapidly in early iterations, the corner-rounding approximation punishes it in later iterations, whereas the
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Figure 5: Convergence plots for the experiments in Section 3.2. While SQS-ε-N converges rapidly, it is not as robust as
GCD in later iterations.

SQS-ε SQS-ε-N SB GCD
Avg. time per iter (sec) 2.81 2.81 101.93 1.86

Table 1: Average computation time per iteration for the four algorithms run in the large image denoising experiment in
Section 3.2.

proposed GCD algorithm converges towards the solution. Figure 5b plots the cost function per iteration after initializing
from the reference image shown in Figure 4c to explore how the algorithms behave when initialized near the minimizer.
The corner-rounded family of algorithms become nonmonotonic in cost, but because the proposed GCD algorithm uses a
proper majorizer, it continues to very slowly decrease the cost function.

4. CONCLUSIONS AND FUTURE WORK
We presented group coordinate descent algorithms for edge-preserving image denoising that support a wide range of
potential functions. The algorithms perform a iterated sequences of independent optimizations, compute no “global”
operations like inner products, and require no additional auxiliary variables to be stored in memory. These qualities make
the proposed algorithms remarkably well-suited to the GPU, which favors independent computation and conservative
memory use. Future work will explore methods to increase parallelism by distributing these algorithms across multiple
devices.
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