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Abstract—Bloch-Siegert B1 mapping for multiple-channel 

parallel excitation systems usually produces noisy estimates in 

low intensity regions. Methods that use linear combinations of 

multiple coils have been proposed to mitigate this problem. 

However, little work has been done to optimize these coil 

combinations to improve the signal-to-noise ratio of B1 

mapping in a robust way. In this paper, we propose a Cramer-

Rao Lower Bound analysis based method to optimize the coil 

combination matrix by minimizing the variance of B1 map 

estimation for the previously proposed Bloch-Siegert B1 

mapping method. We illustrate how optimizing the coil 

combinations yields improved B1 estimates in a simulation of 

brain imaging with a 3T MRI scan. 

Index Terms—Magnetic resonance imaging, B1 mapping, 

Bloch-Siegert B1 mapping, Cramer-Rao Lower  Bound 

I. INTRODUCTION  

In MRI with parallel excitation (PEX), it is critical to rapidly 

and accurately estimate the magnitude and relative phase of each 

coil’s   
  field. Numerous methods have been proposed to map B1 

magnitude, such as actual flip angle imaging (AFI) [1] and Bloch-

Siegert (BS) B1 mapping [2]. For PEX pulse design, relative B1 

phase, i.e., the phase of one coil relative to that of all the other coils, 

is needed and is typically mapped by successively exciting the same 
object with each coil and receiving the signal by a common coil.  

Recently, BS B1 mapping has become popular because it is fast 

and relatively accurate over a wide dynamic range [2]. However, a 

disadvantage of this phase-based method is that estimation in low 

magnitude regions may suffer from low signal-to-noise ratio (SNR), 

due to insufficient excitation or low spin densities. Furthermore, it 

is time-consuming and information redundant to estimate B1 phase 

by a second set of scans. To mitigate this problem, we recently 

developed a regularized BS B1 mapping method to estimate the 

complex multi-coil B1 field with no additional scans needed for 
phase estimation [3].  

To improve SNR, linear combinations of PEX channels are 

used to narrow the dynamic range of effective B1 field in [3], where 

typically “all-but-one” strategies [4-5] are applied. However, these 

strategies are likely to be suboptimal in practice, as the power of 

different channels for the object could be uneven, the relative phase 

between channels could be far from what is assumed. Optimization 

of linear coil combinations has been discussed in [6]; however, only 

a single complex parameter in the combination matrix was 

optimized over a limited range in an empirical way, and the method 

evaluated results according to two criteria, i.e., the dynamic range 

of the composite B1 maps and the condition number of the 

combination matrix, which sometimes are hard to balance.  

In this paper, we propose a method to optimize linear coil 

combinations in [3] based on Cramer-Rao Lower Bound (CRLB) 

analysis. The proposed method is able to optimize over all the 

elements of the combination matrix, which provides the most 

flexibility. Evaluation of the combinations is directly based on the 

variance of the complex B1 field estimates without the need to 

balance multiple criteria. Simulated Annealing is used to optimize 

this highly nonlinear problem. The proposed method is demons-

trated by a simulation study where several practical considerations 
are discussed. 

II. REGULARIZED ESTIMATION OF THE COMPLEX MULTI-

CHANNEL B1 FIELD WITH BS B1 MAPPING 

A. Linear Combinations of Coils in B1 Mapping 

To improve SNR, our method [3] estimates multi-channel B1 

field by acquiring standard BS B1 mapping data with multiple coils 

turned on at each time. As shown in (1), the composite complex B1 

field, i.e.,  ̃    , is the linear combination of the individual 

complex B1 maps, i.e.,      : 

                                       ̃     ∑          

 

   

                                   

where          ,   is the number of channels,   denotes the 

spatial locations, and       is the user-defined complex scalar 

weighting for the mth individual coil in the nth scan.  The goal is to 

optimize over      to obtain the highest SNR. Both the composite 

complex B1 maps and the individual complex B1 maps can be 
expressed as magnitude and phase parts: 

          ̃      ̃       ̃                                       

B. The Signal Model 

The standard BS B1 mapping works by applying an off-

resonance RF pulse, which is called Bloch-Siegert (BS) pulse, after 

the regular excitation pulse [2]. This method typically needs 2 scans 

to measure the B1 magnitude of each coil, thus 2N scans are 

required for an N-channel PEX system.  

Using the same coil combinations for the BS pulse and the 

corresponding excitation pulse, we are able to estimate both B1 

magnitude and (relative) phase with only 2N scans [3]. The signal 

models for the noiseless BS data (reconstructed images) of the nth 

pair of scans, i.e.,   ̅
           

    , are:  

                     {
  ̅

       
          

     ̃       ̃ 
′

    

  ̅
       

          
     ̃       ̃ 

′
    

                          

where          ; the superscripts +/– denote the scan that has 

the BS pulse with       or  –    off-resonance frequency; 

  
        (  ̃    )  

    ,    is the ratio between the flip 

angle and  ̃    ,   
     is the magnitude related to spin density, T1, 

T2, TR, TE, flip angle, receive sensitivity, magnetization transfer 

(MT) effect, etc.;  ̃ 
′

     ̃          , and       is the cor-

responding background phase;    
     is the BS pulse constant that 
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incorporates the B0 field map [2]. The unknown variables are 

 ̃     and  ̃    . Moreover, we modeled additive identical inde-

pendent (i.i.d.) complex Gaussian noise, i.e.,   
    , to the signal:  

                             {
  

       ̅
       

    

  
       ̅

       
    

                                          

where   
     are the noisy signals from the nth pair of scans.  

C. Regularized Estimation of B1 Magnitude and Phase [3] 

Assuming that the composite B1 magnitude,   ̃    , and the 

relative phase, e.g.,  ̃      ̃     are spatially smooth, we apply 

finite differencing matrix C to penalize roughness of the maps. The 

regularizer proposed in [7] is used to prevent phase wraps of 

 ̃      ̃    . With maps discretized into vectors (bolded), the 

final regularized maximum-likelihood cost function is: 
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where    and    are the scalar regularization parameters,     
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. The cost function is iteratively minimized by 

cyclically updating  ̃  ̃ and  . Once  ̃      ̃ are estimated, the 

magnitude and relative phase of the original coils can be derived 

according to (6), where                    which does not 

change the relative phase of the nth coil. 
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where   [

         

   
         

]. 

III. OPTIMIZATION OF THE COIL COMBINATIONS 

The basic idea of the proposed method is to derive a formula for 

the variance of the complex B1 field estimates in terms of the 

combination matrix A by using CRLB analysis, which is the 
foundation for optimizing over A. 

A. The Signal Model with Approximations 

To simplify the noise analysis, we make some reasonable 

approximations for the signal model equations (4): asymmetric MT 

effect [2] is ignored so that   
       

          , and the off- 

resonance effects in    
     are ignored so that     

     
    

       which is a constant. We assume the real and 

imaginary parts of the i.i.d. Gaussian noise are uncorrelated and 

distributed as         where    is the variance, so the signals of 

each pixel are distributed as in (7): 

                          

{
 
 

 
   

                      

  
                       

  
                    

  
                    

                                  

where subscripts n, indices r, primes and tildes are omitted for 

simplicity, and subscripts     denote the real/imaginary parts. 

B. Cramer-Rao Lower Bound Analysis  

The CRLB is a lower bound on the covariance of any unbiased 

estimator under certain regularity conditions. The CRLB can be 

achieved by unbiased maximum likelihood estimators (MLE). This 

work tries to improve the quality of the raw data before applying 

regularized estimation, so the effective estimators are equivalent to 

the estimators in (5) with         which yields MLE. 

Vectorizing (7) yields the nonlinear model: 

                          with                                        (8) 

where       
    

    
    

   ,                         

                                    ,         . 

The regularity condition is satisfied, i.e., the expectation of the 

gradient of log-likelihood      is zero. Then the Fisher information 

     can be derived as follows: 

               [(     )(     )
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According to CRLB, we have the following: 

                                         ([ ̂  ̂])                                              

By using Taylor expansion approximation, we have: 
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where we have inserted subscripts n, indices r, primes and tildes 

except that we put   to the subscripts and make   be the argument, 

as   is the variable of this optimization problem. Assuming noise is 

independent between scans, we derived the variances of the 

complex B1 estimates at  : 
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where        , and         denotes either the diagonal matrix 

with the vector z the diagonal entries or the vector that contains the 
diagonal entries of the matrix z. 

C. Optimize Linear Combinations of Array Elements 

We propose to optimize B1 estimation by minimizing the lower 

bound of noise-to-signal ratio (NSR), which is defined to be the 

ratio between √        and       as shown in (13). Moreover, to 

define a scalar that evaluates the noise performance of the whole 2D 

or 3D B1 field of the N coils, we minimize the maximal NSR over 

all the spatial locations and channels. A practical consideration is 

that PEX systems have power limits, so the maximal magnitude of 

the elements of    is bounded according to the hardware limits. 

Therefore, the final expression of this optimization problem is:  

                                       ̂        
      

                                                  

with      {
      

√       

     
                       |    |   

 ∞                                           |    |   
       

where   is the power limit of the PEX system.   

D. Optimization Using Simulated Annealing (SA) 

The cost function in (13) is highly nonlinear and non-convex in 

terms of A, so it is hard to find the global minimum without a time-

consuming exhaustive search. In practice, however, we only need to 

keep the noise level below a certain reasonable level, instead of 

exhaustively searching for the best choice. Since the size of A is 

small, the SA method, which is implemented in Matlab Optimiza-
tion Toolbox, can find a reasonably good local minimum efficiently.  
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E. Other Practical Considerations 

To apply (12) and (13), we need to know the true B1 maps and 

the image magnitude          which is a known function of 

transmit and receive sensitivities, spin densities, T1 and T2 maps. 

We propose to avoid these impractical requirements for in-vivo 

imaging as follows. Spin densities and T2 values are set to be the 

average values of a canonical brain, while T1 map is uniformly set 

to be the maximal value.   
     is set to be uniform (B0 3T) or 

obtained from an off-line phantom scan (B0>3T). An off-line 

phantom B1 mapping is used as the “true” transmit B1 for the 

optimization, and the B1 phase can also be obtained by a set of fast 
on-line low resolution scans.  

IV. SIMULATION STUDY 

A. Simulation Setup 

A finite-difference time-domain (FDTD) simulation was done 

to generate 2D magnetic fields for an eight-channel parallel 

excitation array for brain imaging in 3T, which is used as the true 

B1 maps in the simulations. We used a set of brain tissue parameter 

maps, e.g., T1 maps, T2 maps and spin densities, from BrainWeb 

database [8] as the true values for generating images produced by 

the BS sequence. The image magnitude is generated based on the 

signal equation of spoiled GRE (SPGR) sequence [9] with image 

parameters:          ,         . The BS induced phase is 

simulated based on BS pulses with        off-resonance (    
           ) and a realistic B0 field map acquired from a brain on 

a 3T GE scanner (ranging from -86 Hz to 25 Hz). Furthermore, 

the   
  map was acquired from a real single-channel body receive 

coil of the 3T GE scanner. By adding some i.i.d. complex Gaussian 

noise to the noiseless images generated based on (3), we simulated 

the raw data in image domain acquired by SPGR-based BS B1 

mapping sequence. The matrix size of these 2D images is      . 

Note that we optimize the coil combination matrix A before 

simulating the raw data. In the data simulation, the standard 

deviation of the Gaussian noise stayed the same and the SNR of raw 

data was around 25 dB depending on the specific coil combinations. 

In this study, we used the standard non-regularized method to 

reconstruct the B1 magnitude and phase. 

We used approximated parameters for the optimization step. T2 

maps and spin densities were set to be the average value of a 

canonical brain tissue; T1 maps were set to be the maximal value of 

brain tissue. Since the true receive coil is single-channel in 3T 

which is relatively uniform, we used a uniform    
  map for the 

optimization. Furthermore, we did another FDTD simulation for a 

uniform phantom with the same coil configurations as the 

simulation for a brain, and the space occupied by the phantom 

covered the brain used in the previous simulation so that the 

phantom B1 maps can be cropped to the brain size for the 

optimization. For the B1 phase specifically, other than using the 

phantom B1 phase which will be called “method 1”, we also 

simulated an on-line low resolution (      matrix) fast scan of 

brain using one transmit coil at a time to obtain the relative B1 

phase, which will be called “method 2”. Circulant structure was 

assumed for the matrix A, and the optimization algorithm was 

initialized with the all-but-one combination, e.g.,             

        . The threshold   in (13) was set such that the RF 

power does not exceed 0.15 Gauss. 

Fig. 1: the true B1 maps 
 

Fig. 2: the offline phantom B1 maps 
 

Fig. 3: estimates by all-but-one method 

 
Fig. 5: estimates by method 2 Fig. 6: the oracle results 

 
Fig. 4: estimates by method 1 
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B. Results 

Fig. 1-2 show the true B1 magnitude and relative phase on the 

brain (Fig. 1) and those on the phantom (masked by the brain shape, 

Fig. 2) which were used for the optimization. The “all-but-one” 

strategy we used was        ,               , which 

produced very noisy estimates as shown in Fig. 3.  The results of 

the optimized coil combinations are shown in Fig. 4-5, where both 

method 1 and method 2 improve the estimations significantly but 

method 2 works better. Lastly, we show the oracle results where the 

optimization was based on the true transmit B1 maps, which were 

only slightly better than those of method 2. Table I summarizes the 

results of Fig. 3-6 quantitatively. Note that all the magnitude maps 

are in the grayscale from 0 to 0.07 Gauss, and all the phase maps 

are in the colorscale from –   to  . 

V. DISCUSSION AND CONCLUSIONS 

According to the results of the proposed method, the 

optimization results are insensitive to inaccurate T2, spin densities 

and receive sensitivities for 3T brain imaging. However, the results 

are more sensitive to different T1 values which are not shown; we 

empirically found that using uniform maps with the maximal T1 is 

generally more robust than uniform maps with other T1 values, e.g., 

the average T1, at least for the case of SPGR sequence. Because the 

magnitude is T1-weighted and long T1 corresponds to low signal, 

which means using T1 smaller than any actual tissue T1 for the 
optimization may make estimates of the longer T1 regions noisy.  

As seen in Fig. 1-2, B1 phase of the phantom is likely to be far 

from that of the brain, whereas the magnitude parts are relatively 

close. As expected, method 2 which used more accurate B1 phase 

worked better than method 1, and method 2 worked almost as well 

as the oracle optimization due to insensitivity to small errors of the 

B1 magnitude estimates by the phantom. In fact, some failure results 

of method 1 using some other phantoms are not shown, while 

method 2 is usually robust. The cost of method 2 is the requirement 

of an online optimization and a fast pre-scan, which is a reasonable 
tradeoff for better robustness in practice. 

Although for low noise levels, good estimates of B1 maps may 

be achieved using the all-but-one combinations with the regularized 

method in [3], the proposed coil combinations produce raw data 

with much better SNR, which promotes robustness of the 

regularized BS B1 mapping method. Sometimes, the results of the 

proposed method could be good enough to use without further 

regularization, which can somewhat simplify implementation and 
eliminates the need to choose regularization parameters. 

This simulation was done for the SPGR sequence, but the 

similar principle can be applied for any other typical BS B1 

mapping compatible sequences. A future work is to explore the 

method for B1 mapping in other parts of human body. Moreover, we 

believe that the CRLB based noise analysis used in this work for BS 

B1 mapping can be applied to coil combinations of other B1 

mapping methods, e.g., AFI [1]. 
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Table I: Statistics of the Results in Fig. 3-6 

 all-but-one method 1 method 2 oracle 

NRMSE of       18.0% 9.09% 5.92% 5.85% 

RMSE of      , 

radians 
0.645 0.355 0.281 0.245 
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