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ABSTRACT

We propose a novel algorithm to adaptively correct head motion during functional magnetic resonance imaging
scans. Our method combines a Kalman-filter-like motion tracker and a registration cost function based on
a sparse residual image model. Using simulated data, we compare a time series correlation analysis of our
prospectively corrected reconstruction against the same analysis using post-scan motion correction provided by
standard software. Our experiments demonstrate our prospective correction method is capable of mitigating
motion effects and improving the sensitivity and specificity of the correlation analysis, without relying on costly
external tracking hardware or separate navigational data that would take extra time to acquire during each time
frame.
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1. INTRODUCTION

Head motion is an important source of artifacts affecting functional magnetic resonance imaging (fMRI).1 Mis-
aligned time series confound voxel-by-voxel statistical analysis of fMRI data, as task-related activations may
move among different voxels over time. Conventional processing of fMRI data includes retrospective (post-scan)
motion correction2 and inclusion of motion estimates as nuisance regressors in the general linear model3 used to
identify task-correlated regions. In this work, we investigate using prospective (within-scan) adjustments of the
scan prescription to correct for estimated motion, improving the quality of fMRI data analysis. In particular, we
propose a novel combination of Kalman filter-like motion tracking and sparse residual-based motion estimation
and describe an implementation suitable for real time prospective correction.

A comparison4 of retrospective post-processing software for fMRI highlights some features of commonly-used
registration algorithms. Motion correction methods generally involve spatial interpolation that cause smoothing
and can distort the temporal statistics of the acquired time series. Motion correlated with the stimulus introduces
additional problems when motion estimates are included as nuisance regressors, potentially confusing activations
for motion artifacts. Prospective correction adjusts the sampling pattern rather than the acquired data, so
the data remains unaffected by registration-induced smoothing. If done on a slice-by-slice basis, prospective
motion correction also can avoid spin saturation effects, which can be difficult to correct post-scan.5 However,
prospective motion correction must be done in real time, which imposes practical limits on estimation accuracy,
since registration methods can be time-consuming.

Numerous prospective motion correction approaches have been proposed previously for functional MRI.6

Some prospective correction methods rely on external tracking hardware for estimating motion.7 Methods
like Prospective Acquisition CorrEction (PACE)8 use the images themselves for prospective correction with a
linearized motion model. PROspective MOtion correction (PROMO)9 uses an extended Kalman filter to track
head motion. PROMO also uses special navigators interleaved with the fMRI readouts for motion estimation,
since the fMRI data are sensitive to other time-varying phenomena like activations and physiological signals.
However, these navigators cost additional time between frames, reducing temporal resolution.
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To improve upon existing prospective correction techniques and mitigate the need for navigator scans, we
leverage the sparse residual image concept used for retrospective motion correction in dynamic MRI in methods
like k-t FOCal Underdetermined System Solver (FOCUSS)10 and motion-adaptive spatio-temporal regulariza-
tion (MASTeR).11 By using a sparsifying penalty on the residual between successive time frames, we suppress
residual motion while preserving time-varying spatially sparse image content like functional activations. Since
the registration is performed against the previous frame, it helps that activations are also sparse in the time-
gradient domain. We expect the combination of sparse residual modeling and Kalman filter prediction to yield
robust motion estimates suited to prospective motion correction.

In Section 2, we first construct our cost functions for image reconstruction and motion estimation. We propose
a method based on the alternating direction method of multipliers (ADMM) to solve this joint optimization
problem efficiently. In Section 3, we describe our simulation of a functional MRI time series, including activations
and rigid frame-by-frame motion. We provide experimental results in Section 4 that support using our method
for prospective motion correction, and we discuss these results and future directions in Section 5.

2. THEORY

To begin, consider frames xt
0, for t = 0, . . . , NF − 1, all in the scanner coordinate system. Due to head motion,

the position of the head in these frames changes relative to its position in the initial frame, which we use
as a common reference. Ignoring image content changes, we approximate this deformation from frame x0

0 to
xt

0 as three-dimensional rigid-body motion described using the six-parameter vector αt (three translational
parameters and three rotational parameters). From an estimate α̂t for this motion, we form the registered
frame xt

reg, so the head ideally has the same position and orientation as x0 (we drop the subscript for the
first frame). We use the b-spline interpolation12, 13 code in the Image Reconstruction Toolbox available at
http://web.eecs.umich.edu/~fessler/code/index.html to perform this transformation and let T (x; α) be
the transformation of image x by motion α. For convenience, we introduce the notation T (x; αn, . . . , α1) to
describe successive motion transformations, first by α1, then by α2, and last by αn. By iterating motion
transforms, we can register one frame to the next: xt

0 is registered to T (xt−1
0 ; α̂t, (α̂t−1)(−1)), where (α̂t−1)(−1)

is the inverse motion for frame t− 1.

With prospective correction, we measure our images not in the common coordinate system but in a mea-
surement coordinate system corrected using our motion estimates for the previous frame. We define xt

meas =
T (xt

0; (α̂
t−1)(−1)) to be the image we actually sample in k-space. The assumption underlying using prospective

correction is that the residual motion between frames is small compared to the overall motion relative to the
initial frame. The data yt acquired for frame t is corrupted by complex AWGN ηt with variance σ2:

yt = MFxt
meas + ηt, (1)

where F is the Discrete Fourier Transform (DFT), and M extracts the sampled k-space frequencies.

A sparse residual image model is used in retrospective methods like k-t FOCUSS10 and MASTeR11 because
the difference between successive frames after correcting for motion can be modeled as sparse in problems like
dynamic cardiac imaging. The cost function used for registration is ‖x − T (xt−1

reg ; (αt−1)−1, α)‖1. This sparse
residual model is a good fit for the functional imaging problem based on the spatial sparsity of the time-varying
activations. The joint motion estimation/reconstruction problem is

{xt
meas, α

t} ∈ arg min
x,α

1
2σ2 ‖MFx− yt‖2 + λ‖x− T (xt−1

reg ; (αt−1)(−1), α)‖1, (2)

where the parameter λ controls the sparsity of the difference image. In the undersampled or noisy cases, one
could add a suitable image regularization term to the objective function.14

Kalman filtering has been used to track motion in prospectively corrected MRI through the PROMO9 method.
We model α0, . . . , αt, . . . as a first-order random walk process with zero-mean Gaussian process innovation a
with covariance matrix Q: αt = αt−1 + at. The PROMO method uses navigators to estimate motion, as they
are relatively insensitive to time-varying signals like task activations. Using the sparse residual model described
before, we propose extending this filtering approach to motion estimation from functional MRI images.
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Augmenting the sparse residual optimization problem with the Kalman filter prediction model yields our
proposed method:

{xt
meas, a

t} ∈ argmin
x,a

1
2σ2 ‖MFx− yt‖2 + λ‖x− T (xt−1

reg ; (αt−1)(−1), αt−1 + a)‖1 + 1
2‖a‖2(P t|t−1

α )−1 , (3)

where P t|t−1
α = P t−1

α + Q is the predicted covariance, and P t−1
α is the posterior covariance for the previous

frame (P 0
α = 0).

To solve this problem efficiently, we linearize the transformation T (xt−1
reg ; (αt−1)(−1), αt−1 + a) around the

previous motion estimate (a = 0), as is done in PROMO:

{xt, at} ∈ arg min
x,a

1
2σ2 ‖MFx− yt‖2 + λ‖x− (JT a + xt−1

reg )‖1 + 1
2‖a‖2(P t|t−1

α )−1 , (4)

where JT is the Jacobian matrix of T (xt−1
reg ; (αt−1)(−1), αt−1+a) around a = 0. Next, we introduce the auxiliary

variable s = x−(JT a+xt−1
reg ) and solve the resulting constrained problem using the alternating direction method

of multipliers (ADMM):15

{xt
meas, a

t, s} ∈ arg min
x,a,s

1
2σ2 ‖MFx− yt‖2 + λ‖s‖1 + 1

2‖a‖2(P t|t−1
α )−1 + μs

2 ‖x− JT a− s− xt−1
reg + us‖22

s.t. (x− JT a)− s = xt−1
reg , (5)

where us and μs are the scaled dual vector and ADMM tuning parameter, respectively. The subproblems
iterating among solving for x and a jointly, solving for s, and updating us are:

{x, a} ← argmin
x,a

1
2σ2 ‖MFx− yt‖2 + 1

2‖a‖2(P t|t−1
α )−1 + μs

2 ‖x− JT a− (s + xt−1
reg − us)‖22; (6)

s← argmin
s

λ‖s‖1 + μs

2 ‖s− (x− JT a− xt−1
reg + us)‖22; and (7)

us ← us + (x− JT a− s− xt−1
reg ). (8)

The first subproblem is a least-squares problem, so its corresponding normal equations are
[ 1

σ2 F ′M ′MF + μsI −μsJT

−μsJ
′
T (P t|t−1

α )−1 + μsJ
′
T JT

] [

x
a

]

=
[

1
σ2 F ′M ′yt + μs(s + xt−1

reg − us)
−μsJ

′
T (s + xt−1

reg − us)

]

, (9)

where [·]′ is the conjugate-transpose operator. Denote the block matrix on the left-hand-side
[

A B
B′ D

]

, and the
block vector on the right-hand-side

[

f
g

]

. Then, since A and
[

A B
B′ D

]

are invertible, for μs > 0, we can compute
a = (Re{D −B′A−1B})−1(Re{g −B′A−1f}), where Re{·} constitutes the real part of a matrix or vector,
and x = A−1(f −Ba). In general, computing A−1 is easily accomplished by taking advantage of its circulant
structure:

A−1 = F−1( N
σ2 M ′M + μsI)−1F , (10)

where N is the number of image voxels in x. When M fully samples k-space, this expression simplifies further,
to 1

(μs+N/σ2)I. We plug our expression for A−1 into

D −B′A−1B = (P t|t−1
α )−1 + μsJ

′
T JT − μ2

s(FJT )′( N
σ2 M ′M + μsI)−1(FJT ). (11)

Since the dimensions are small (D is a six-by-six matrix), direct inversion is possible. It is possible to reduce
computations by precomputing FJT and F ′M ′yt once per frame, so the only significant computation involves
computing the DFT’s associated with A−1f and A−1Ba once per ADMM iteration. Again, the computation
simplifies in the fully sampled case.

The s-update consists of soft-thresholding the vector x − JT a − xt−1
reg + us with shrinkage threshold λ/μs.

Ideally, μs would be chosen so that λ/μs thresholds an appropriate fraction of that vector’s coefficients. In our
simulations, we choose μs and λ empirically. We initialize the image using the direct reconstruction 1

N F ′M ′yt
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Figure 1. The activation pattern was generated by convolving a rough hemodynamic response function (area 0.05) with
a block design with a 60 second period and a 50% duty cycle. The 20 (sampled) axial slices of the high-resolution
T2-weighted BrainWeb phantom contain parts of five ellipsoidal activation regions (white) that share this activation
pattern.

and start with a = 0. We also begin with s set to x−JT a−xt−1
reg and us = 0. We then iterate through solving

the subproblems until the next time frame is ready to begin.

Once the iterations are complete, we update the posterior covariance P t
α. However, finding the exact posterior

covariance for the nonlinear estimator α̂t is challenging. Instead, we approximate the posterior covariance with
that of the linear Kalman filter with the sum-of-squared-differences registration cost function 1

2σ2 ‖MFJT a −
(yt −MFxt−1

reg )‖22. So (P t
α)−1 = (P t|t−1

α )−1 + 1
σ2 (MFJT )′(MFJT ), where xt−1

reg and JT are treated as fixed
(nonrandom) quantities, ignoring their dependence on past values of α.

3. METHODS

To evaluate our method, we simulated sparse activations on a T2-weighted normal BrainWeb phantom16 available
online at http://www.bic.mni.mcgill.ca/brainweb/. The phantom volume initially measured 181× 217× 60
voxels with resolution 1 × 1 × 3 mm. The volume was cropped at the very top of the head and padded in the
axial plane to measure 256× 256× 50 voxels with the same high resolution.

The sparse activations were simulated using five ellipsoids placed arbitrarily in the brain sharing a single
activation pattern characterized by the convolution of a rough hemodynamic response function with a block design
with 30 seconds on-task and a 60 second cycle. We resampled the canonical hemodynamic response function17

included in SPM8, which is available online at http://www.fil.ion.ucl.ac.uk/spm/. The amplitude of the
activation pattern was chosen to be 5% of the maximum anatomical amplitude. The activation time series and
ellipsoidal activation regions are shown in Fig. 1.

We generated rigid-body frame motion according to the first-order random walk process described in Section 2.
During each time frame, we simulated iid zero-mean Gaussian innovations with variance 0.1252 units2 per second,
where translational units are mm, and rotation is measured with respect to the major axes, in degrees. We
enforced a cap of ±5 units maximum motion. Figure 2 depicts the generated true motion parameters for 200
seconds of simulation time.

Before sampling, the high-resolution volume was transformed to measurement coordinates using b-spline
interpolation. We then generated low-resolution k-space data for the same twenty 3 mm axial slices of each
time frame using a single-shot echo planar imaging (EPI) trajectory (full field of view, 64 × 64 matrix size).
We added iid zero-mean additive complex Gaussian noise with 40 dB SNR. We did not consider EPI ghosting
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Figure 2. Six-parameter rigid-body motion generated by a Gaussian-stepping first-order random walk. These motion
parameters were the true motion used in the simulation. The translations Δx, Δy, and Δz are in the right-left, anterior-
posterior, and superior-inferior directions, respectively. The major-axis rotations α, β, and γ are in the axial, coronal,
and sagital planes, respectively.

effects, intra-frame motion, spin saturation, field inhomogeneity, and respiratory and cardiac noise to simplify
our simulation. We collected 200 frames with a repetition time (TR) of 1.0 s, corresponding to 50 ms per slice.
Real and imaginary components of noisy data were quantized to 16 bits and “transmitted” in real time to the
reconstruction code written in Matlab running on the same machine. We did not model network latency effects,
which we would expect to be minimal, since the reconstruction machine would be directly connected to the
scanner backplane.

Our preliminary experiments compare the time series correlations to the expected task-based activations
with and without prospective motion correction (using the proposed method). We avoid using a general linear
model with motion estimates as regressors because of the potential for task-related motion being correlated with
our stimulus. We examine the correlation maps before and after retrospective realignment and re-slicing of the
acquired time series using the standard tool found in SPM8 (run with default parameters). We compute the
time series correlation coefficient r between an image x at voxel n and the activation sequence a0, . . . , aNF −1

using the standard formula

r[n] =
1

NF −1

∑NF −1
t=0 (xt[n]− x̄[n])(at − ā)

sx[n]sa
, (12)

where x̄ and ā are the sample means of the image and activation sequence over time, and sx and sa are the
(unbiased) sample standard deviations of the same.

4. RESULTS

First, we demonstrate the effectiveness of our real time motion estimation algorithm using the sparse residual and
Kalman filter tracking. Figure 3 shows that the motion estimate errors from our proposed prospective correction
method have been reduced to within ±0.3 units for most frames, nearly an order of magnitude lower than the
uncorrected motion. The axial-plane motion estimates (Δx, Δy, and α) appear to have smaller errors than the
other motion, with errors of less than ±0.1 units.

The mean absolute residual translational motion for the prospectively corrected data is only 0.220 mm
(for comparison, a voxel measures 4 × 4 × 3 mm), versus 1.24 mm total translational motion for the simulated
acquisition without prospective correction. The mean absolute residual rotation angle (in axis-angle form) is only
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Figure 3. Motion errors after prospective motion correction. The translational motion errors are shown in black lines, and
the rotational motion errors are in gray lines.

0.264 degrees after prospective correction, versus 1.73 degrees without it. The residual motion after prospective
correction is more than five times smaller than the overall motion, on average.

In the context of functional MRI, one uses such time series acquisitions to measure task-related correlations
between voxels in the brain and the known block design, identifying activation regions like those shown in the
ideal map in Fig. 1. The low-resolution reconstructed images portrayed in Fig. 4 for the 100th time frame
all appear very similar with or without prospective correction, and with or without retrospective registration.
However, small differences correlated with the stimulus can have a greater impact on our statistical analysis.
First, we plot the correlation coefficients for the acquired reconstructed images with and without prospective
motion correction, before any further processing of the data. At this stage, no further motion correction has
been performed, so both time series are misaligned, although the misalignment is expected to be minimal for the
prospectively corrected data. Figure 5 displays the correlation coefficient maps. Note how clean the activation
regions are in the prospectively corrected image. The errors due to motion are much more noticeable in the map
without prospective correction, especially in the difference images.

To address the effects of residual motion, we process both simulated acquisitions using the standard tools
for retrospective rigid motion correction found in SPM8. The spline-based interpolator introduces local spatial
smoothing among the realigned time frames, and we observe the effects in increased background correlations in
both data sets. The correlation coefficients for the realigned and re-sliced time series are portrayed in Fig. 6. The
outermost slices were masked out by the re-slicing process, since no additional padding slices were acquired in our
simulation. The quality of the activation regions signified by bright ellipses in both processed data sets nearly
matches the original prospectively corrected data, but the background correlations are much more noticeable,
especially in the case without prospective motion correction.

To evaluate the quality of these correlation maps quantitatively, we compute receiver operator characteristic
(ROC) curves in Fig. 7, by computing sensitivity and specificity values for absolute value correlation coefficient
thresholds from zero to one. The sensitivity and specificity rates exclude the first and last slices in the retrospec-
tively corrected cases to avoid bias from missing data. The sensitivity represents the fraction of correctly detected
activations, and the false alarm rate represents the fraction of inactive voxels incorrectly marked as active. Aim-
ing for the top-left corner of the plot, we observe the prospectively corrected reconstructions yield better ROC
curves than their uncorrected counterparts. Retrospective registration appears to improve the sensitivity of the
correlation statistic, although not as effectively as prospective correction.
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Figure 4. Reconstructed images are shown with and without prospective correction, before and after retrospective registra-
tion (using SPM8). Note that the retrospective processing masks our outermost slices since we did not acquire additional
slices for padding in our simulation.

5. DISCUSSION

The proposed joint image reconstruction and motion estimation method combines both a Kalman-filter-like
motion tracking component and a sparse residual image registration cost function to yield high-quality motion
estimates suitable for prospective motion correction on a frame-by-frame basis. The quality of the time series
correlation coefficients estimated from the prospectively corrected data exceeds that of the retrospectively regis-
tered data. The cause of this improvement is most likely the reduced range of residual motion experienced after
prospective correction, as reported by the SPM8 retrospective rigid-body registrations. We emphasize that this
high quality was achieved in real (simulated) time, while the slices were being “acquired” by the simulation and
transferred to the reconstruction and motion estimation software, without using navigator sequences or anything
else that would inflate the repetition time of the time series.

The proposed method has multiple limitations that we plan to address in the near term. We acquired fully-
sampled data in our simulations, so our reconstructions did not require regularization. Using regularization
would require performing DFT’s in each iteration of the proposed algorithm, slowing the method slightly. Also,
the tracking component of our algorithm is highly sensitive to the estimate of the motion process’ innovation
variance. In reality, we do not know this variance a priori, and we can expect the variance to change over time.
We aim to adjust our algorithm to estimate and adaptively tune our innovation variance based on the motion
estimates actually observed. Also, the ADMM penalty parameter and sparsity parameter are set manually, which
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Figure 5. Correlation coefficients for the 200-frame time series reconstructed with and without prospective motion correc-
tion, before retrospective processing. Absolute difference images relative to the ideal activation mask also are shown.

may not be optimal in practice. We plan to experiment with automatic tuning of the sparsity parameter using
Stein’s unbiased risk estimate18 to predict the error in the motion estimates.

Further developments and applications of the proposed method include extending the measurement model
to non-Cartesian sampling (such as spiral) and to accelerated parallel imaging with multiple receiver channels
of data processed simultaneously. We also expect that our method can improve further if time-consuming
components were optimized for parallel processing, since we could perform more iterations within a single TR.
Reducing the computational cost of steps like computing the Jacobian matrix JT would enable prospective
motion compensation within time frames, which could alleviate spin-saturation effects.
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