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Fast Variance Prediction for Iterative
Reconstruction of 3D Helical CT Images

Stephen M. Schmitt and Jeffrey A. Fessler

Abstract—Fast variance prediction for iteratively-reconstructed
helical CT images is useful for analysis of resulting images and
potentially for dynamic dose adjustment during a scan. Previous
methods require impractical computation times to approximate
the image variance; other methods are able to approximate
variance quickly but only for specific CT geometries, excluding
3D helical CT. In this paper we present an extension of these
previous fast methods to predict the variance of iteratively
reconstructed images for third-generation 3D helical CT scans.
We compare this method in computation time and error to the
empirical variance derived from multiple simulated reconstruc-
tion realizations.

I. INTRODUCTION

Iterative reconstruction (IR) methods for computed tomog-
raphy are receiving increased attention for their improved
resolution and noise properties compared to FBP [7]. How-
ever, the statistical properties of IR reconstructions are
difficult to compute compared to FBP. Closed-form but
computationally intractable expressions exist [1] for the
mean and covariance matrix of the reconstruction when
the weighting matrix W and covariance of the projections
are given, so faster prediction methods are desirable.

Prior work has exploited approximate local shift-invariance
to develop FFT-based approximations for the variance map
of the image, i.e., the diagonal of the covariance matrix, for
arbitrary system geometries [5]. Unlike empirical methods,
which can only be used to find the variance map of the
entire image simultaneously, these FFT-based methods can
approximate the variance of one specific voxel of interest
at a time. However, these FFT-based methods are compu-
tationally intensive; they are useful for theoretical analysis
but require projection and back-projection of each voxel of
interest and are unsuitable for producing a variance map for
a whole volume. There are methods for 2D fan-beam [9], 3D
step-and-shoot [10], and 3D axial CT [6] that make further
approximations to greatly reduce the computational load
of this method and make it suitable for predicting variance
maps for an entire volume. None of these methods, though,
apply directly to 3D helical CT.

In this paper, we adapt [6] to the problem of predicting
approximate variance maps for iterative reconstruction of
3D helical CT scans. Like this prior work, the computational
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cost of the variance approximation is reduced by several
orders of magnitude compared to empirical estimation or
the FFT-based method in [5] for CT.

II. METHODS

A reconstruction method using a weighted least squares
data-fit term using log-sinogram observations y, system
matrix A and a regularization term R is given by

x̂ = argminx
1

2
||y−Ax||2W + α

2
R(x). (1)

With a weighting matrix W = cov(y)−1 and assuming that
the minimization algorithm is iterated until convergence,
the covariance matrix of x̂ in (1) is approximately [1]:

cov(x̂) ≈ (H+α∇2R(x̂))−1H(H+α∇2R(x̂))−1. (2)

If R(x) = ∑
i ψ([Cx]i ) for a matrix C and a convex penalty

function ψ that is twice-differentiable in an open set con-
taining 0 with ψ(0) =ψ′(0) = 0, ψ′′(0) = 1, then

∇2R(x) = CTΨ̈(x)C, (3)

where Ψ̈(x) is a diagonal matrix with [Ψ̈(x)] j j =ψ′′([Cx] j ).
With a sufficiently large α, we would expect that, for most
voxels, [Cx] j is small and in the twice-differentiable region
of ψ and therefore, that Ψ̈(x̂) ≈ I is a valid approximation
except near edges between regions of different attenuation
coefficients in the image. Making this substitution trans-
forms (2) into

cov(x̂) ≈ (H+αCTC)−1H(H+αCTC)−1, (4)

where H � ATWA. However, direct computation of this
matrix is not computationally tractable.

A. Prior work

In [6], we define a continuous-frequency response operator
local to the j th voxel:

(
F 3

j ,cont {x}
)

(�ν) =
|�N |∑

�=1
x� exp

(−ı2π�ν · (�n�−�n j )
)

, (5)

where �n j is the position, in 3 integer coordinates, of the
voxel j . We show that the variance of this voxel j can be
estimated by:

var(x̂ j ) ≈
∫

[− 1
2 , 1

2 ]3

H j (�ν)

(H j (�ν)+αR(�ν))2 d�ν, (6)
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where H j � F 3
j ,cont{H∗ j }, representing the frequency re-

sponse of projection, weighting, and back-projection, and
R � F 3

j ,cont{[CTC]∗ j }, representing the frequency response
of the regularizer when [Cx] j ≈ 0.

We also show that H j (�ν) can be written as H j (�ν) ≈ K · J (�ν) ·
E j (Φ). Here, J depends only on the spatial frequency and
not the image or voxel location. E j is dependent on the
image and voxel location but only depends on the spatial
frequency via its angle Φ in cylindrical coordinates (ρ,Φ,ν3).
When H j is specified in this form, (6) can be rewritten in
a single-integral form:

var(x̂ j ) ≈α−1
∫2π

0
F (Φ,α−1K E j (Φ))dΦ, (7)

where

F (Φ,γ)�
∫ρmax(Φ)

0

∫ 1
2

− 1
2

γ · J (ρ,Φ,ν3) ·ρ
(γ · J (ρ,Φ,ν3)+R(�ν))2 dν3 dρ. (8)

There is no closed form for (8), but we can numerically
integrate and tabulate it for many values of Φ and γ,
independently of the image or weighting matrix, for a
given CT geometry and regularizer. In doing so, variance
estimation via (7) is simply a one-dimensional numerical
integration of values looked up in a pre-computed table of
F .

We can import much of the derivation in [6] to apply to
helical CT instead of axial CT. In particular, we can still
approximate H j (�ν) ≈ K · J (�ν) · E j (Φ), where for helical CT
one can show:

K = Δ3
xΔz D2

sd

/
D2

s0ΔsΔtΔβ (9)

J (ρ,Φ,ν3) = sinc(ρ cosΦ)2 sinc(ρ sinΦ)2 sinc(ν3)2

ρ
(10)

E j (Φ) =
∑

β∈B j (Φ)

D2
s0ẘβ, j

Dβ, j

√
Ds0 − r 2

j cos2(φ j −Φ)
. (11)

Here, Δx is the spacing between voxels in the x and y direc-
tions; Δz is the spacing between voxels in the z direction;
Δs , Δt are the spacings between pixels on the detector in
the s and t directions; Δβ is the spacing (in radians) of
detector angles between views; Dsd is the distance from
the x-ray source to the detector; Ds0 is the distance from
the source to the isocenter; Dβ, j is the distance from the
source to the voxel j when the source is at angle β; r j is
the distance from the isocenter to voxel j ; φ j is the angle
of voxel j when represented in cylindrical coordinates. All
distances given above ignore the z-coordinate; all points
are projected into the x y-plane before calculating distances.
The only term dependent on the object is ẘβ, j , which is
discussed further in the next section.

B. Modification for helical CT

The items changed by the transition to helical CT are B j (Φ),
which is the set of source angles β that solve

r j cos(φ j −Φ) = Ds0 cos(β−Φ), (12)

and ẘβ, j . The term ẘβ, j is the element of the statistical
weighting matrix W corresponding to the location on the
detector where a ray from the source at angle β passing
through the voxel j lands (or 0, if this ray does not land on
the detector).

Equation (12) is not changed by the transition to helical CT,
but the values of β that solve it are different. The solutions
are the set of source angles for which the ray passing
through voxel j is perpendicular to the frequency vector
�ν, where the ray and frequency vector are both projected
into the x y-plane.

For axial CT, the set B j is given by:

B j (Φ) = {β+,β−} =
{
Φ±arccos

(
r j

Ds0
cos(φ j −Φ)

)}
. (13)

This covers all of the solutions in one turn, which covers
a maximum range of 2π. For helical CT with an arbitrary
starting and ending angles βmin, βmax,

B j (Φ) =
{
Φ±arccos

(
r j

Ds0
cos(φ j −Φ)

)
+k2π

}
∩ [βmin,βmax]

(14)
for k ∈ Z. Axial CT is then a special case of (14). Since
a large part of the computational cost of our method is
finding (11), the change to helical CT increases the cost of
our algorithm linearly in the number of turns.

The other quantity, ẘβ, j , is unchanged except that the
lookup procedure is computed for helical CT instead of axial
CT.

III. RESULTS

To evaluate our prediction for the variance map, we
compared it to the variance map derived empirically by
simulating 93 reconstructions of a 512 × 512 × 500 XCAT
phantom (Fig. 1 displays axial, sagittal, and coronal slices)
with voxel size Δx ,Δy = 0.977mm,Δz = 0.625mm. The sys-
tem geometry, based on a third-generation GE helical CT
scanner, had Δs ×Δt = 1.0239×1.0964mm detector element
size, Dsd = 949.075mm source-to-detector distance, and
Ds0 = 408.075mm source-to-isocenter distance. In our sim-
ulations, the X-ray source went through 3 rotations of 984
views each, with a pitch of 1. Each reconstruction used an
ordered-subset method with 41 subsets for 100 iterations.

The regularization used a first-order differencing matrix C
that considered the 6 face-neighbors of each voxel. These
differences were penalized by a Huber cost function:

ψ(x) =
{

x2/2, |x| ≤ δ
δ|x|−δ2/2, |x| > δ ,
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which satisfies our criteria for cost functions. The value
of δ was 200HU. The regularization parameter α was
equal to 128. The weighting W was normalized so that
unattenuated rays had a weight of 1. The simulated X-ray
beam intensity was 105 photons per view. For simplicity, we
used a standard edge-preserving regularizer, rather than the
modified regularizer considered in [2].

XCAT phantom

Fig. 1. XCAT phantom (top left is transaxial slice through center of volume;
bottom left is center coronal slice; top right is center sagittal slice.)

Figure 2 shows axial, sagittal, and coronal slices of the image
of the empirical standard deviation from our simulated
reconstructions. Since the results were noisy and the ground
truth standard deviation is slowly varying, we blurred the
empirical image with a gaussian kernel with a FWHM of 4
voxels each in the x and y directions. Figure 3 shows the
corresponding image from our approximation. Since stan-
dard deviation varies slowly, we only compute it once per
4×4×4 block and use nearest-neighbor interpolation to fill
in the rest. More sophisticated interpolation could be used,
but the interpolation error is minimal compared to the
intrinsic error of our method. Figure 4 shows the magnitude
of the error of our approximated standard deviation. Figure
5 shows both the empirical and approximated standard
deviation along a one-dimensional profile through a z-axis
of the image. The spike in the empirical map near the
end of the axial FOV is due to a suboptimal OS algorithm
implementation that is somewhat unstable in regions where
the helical sampling is poor. The OS algorithm in [4] would
reduce this instability and reduce the empirical variance in
the end slices.

The computation time of our method for the entire volume
using 4×4×4 downsampling was 1040 CPU-seconds using
one core of an Intel Core i7-860 with 16 GB of memory.
The empirical reconstructions took a total of 300.8 CPU-
days each using one core of an Intel X5650 processor
also with 16GB of memory; the range for the individual
reconstructions was 2.58 to 3.89 CPU-days.

The axial modulations seen in the coronal and sagittal
noise maps were a new phenomena in helical CT variance
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Fig. 2. Empirical standard deviation
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Fig. 3. Predicted standard deviation
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Fig. 4. Error in predicted standard deviation

maps that we had not observed in our previous 3D axial
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Fig. 5. Empirical & Predicted z-slice through object

CT noise predictions [6]. To help explain this behaviour,
we computed a 3D map that shows for each voxel how
many rays intersect that voxel. Intuitively, voxels with more
intersecting rays are better sampled and thus may have
lower variance. Figure 6 shows slices through this ray
counting map, and indeed we observe that the sampling
pattern influences the predicted and empirical noise maps.
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Fig. 6. Count of views that contribute to each voxel’s variance prediction

IV. DISCUSSION

The presented methods are able to predict the standard
deviation of most voxels in the reconstructed image within
an error of 20% in less time than the amount of time
empirical measurement takes by a factor of over 10000.
The more general (and accurate) approximation using a
forward- and back-projection takes 2400 CPU-seconds per
voxel (using the same Intel Core i7 above), a factor of over
4 ·106 times as long as our method for one voxel. Whether
the tradeoff for time at the expense of accuracy provided
by our method is acceptable depends on the application.
We also note that our methods would be applicable to axial
CT, including short scans, as a special case.

Outside the support of the object there is significant ap-
proximation error because our method ignores the non-

negativity constraint of the reconstruction. The empirical
variance outside the object approaches zero, and so the
relative error of our method (which does not go to zero)
becomes infinite. An extension to our method could use a
pilot reconstruction or masking method (e.g. [3]) to identify
external air regions and simply estimate the variance as
zero, or use a separate approximation that is more suitable
for these regions.

V. CONCLUSIONS

In this paper, we have presented a method that is able
to approximate the variance of each voxel of a 3D helical
CT image reconstructed using a penalized weighted least-
squares formulation. This method has a computational cost
that is smaller by several orders of magnitude compared to
existing variance prediction methods for helical CT, while
maintaining a reasonable error within regions of interest.

One direction of future work will be investigating the effect
of mismatch between the weighting matrix used for recon-
struction and the “optimal” weighting matrix, the inverse of
the sinogram covariance. Since the covariance matrix of the
sinogram is unknown, in practice we can only approximate
it. Knowing the effect of mismatch would also be useful for
cases where mismatch is intentional, e.g. [8], to mask out
observations known to cause artifacts.
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