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ABSTRACT

Magnetic resonance imaging (MRI) provides great flexibility in the
choice of k-space sampling trajectories. NonCartesian trajectories
exhibit several advantages over Cartesian ones but are less amenable
to FFT-based manipulation of k-space data. Thus, existing iterative
reconstruction methods for nonCartesian trajectories require rela-
tively more computation (interpolation/gridding in addition to FFTs)
and can be slow, especially for (undersampled) parallel MRI. In this
work, we focus on SENSE-based regularized image reconstruction
for nonCartesian trajectories and propose a majorize-minimize ap-
proach where we first majorize the SENSE data-fidelity term with
a quadratic form involving a symmetric positive definite circulant
matrix. For the minimization step, we apply a suitable variable split-
ting (VS) strategy combined with the augmented Lagrangian frame-
work and alternating minimization that together decouple the circu-
lant matrix from coil sensitivities and the regularizer. The result-
ing iterative algorithm admits simple update steps, is amenable to
FFT-based matrix inversions due in part to the circulant matrix in
the majorizer and provides a natural framework for incorporating a
two-step procedure for acceleration. Simulations indicate that the
proposed algorithm converges faster than some state-of-the-art VS-
based iterative image reconstruction methods for the same problem.

Index Terms— SENSitivity Encoding (SENSE), NonCartesian
trajectories, Majorize-minimize, Variable-splitting, Augmented La-
grangian.

1. INTRODUCTION

Magnetic resonance imaging (MRI) is a versatile imaging technique
that provides great flexibility in the choice of sampling trajecto-
ries for acquiring measurements in k-space. NonCartesian trajec-
tories possess several advantages over Cartesian ones such as effi-
cient coverage of k-space for a given number of phase encodes and
robustness to motion and off-resonance effects [1]. However, for
nonCartesian trajectories, image reconstruction can no longer be ac-
complished with DFT / FFT alone and requires additional operations
(e.g., nonuniform FFT (NUFFT) [2] performs interpolation/gridding
in addition to FFTs) that can add to compute time during (iterative)
reconstruction.

In this work, we focus on SENSitivity Encoding (SENSE)
based regularized image reconstruction—Regularized SENSE—
since SENSE can tackle arbitrary nonCartesian trajectories. We
minimize a cost function J composed of a SENSE-type data-fidelity
term [3] and a convex regularizer [4, 5]. To circumvent repeti-
tive use of NUFFT-type operations when iteratively minimizing
J , we propose to use a majorize-minimize (MM) approach where
we first design a majorizer Jmaj for J that involves a symmetric
positive definite circulant matrix. Next, we minimize Jmaj using
an appropriate variable splitting (VS) strategy combined with the
augmented Lagrangian (AL) framework and alternating minimiza-
tion (AM) similar to that in [5]. This leads to an iterative MAMAL
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(MAjorize-Minimize AL) algorithm that admits simple update steps
and FFT-based matrix inversions due to the circulant matrix in Jmaj.
We further accelerate MAMAL using a two-step update (TS) strategy
similar to that discussed in [6, Sec. 4] leading to MALTS (Majorize-
minimize AL TS). Simulation results indicate that MALTS converges
to a minimizer of J faster than state-of-the-art VS-based iterative
reconstruction techniques such as the split-Bregman (SB) [7] and the
Bregman operator splitting (BOS) [8] methods that are applicable to
Regularized SENSE.

2. REGULARIZED SENSE

SENSE provides a simple framework for incorporating regulariza-
tion that is necessary to reduce aliasing artifacts and noise at high
reduction (undersampling) factors [4]. Regularized SENSE recon-
struction can be formulated as an optimization problem [4, 5],

P0 : x(⋆) △

= argmin
x

{

J(x)
△

= D(d,Sx) + λΨ(Rx)
}

, (1)

D(d,Sx)
△

= ‖d− FSx‖22, (2)

where x(⋆) ∈ C
N is the reconstructed image, S

△

= [S′
1 · · ·S

′

L]
′,

Sl ∈ C
N×N is a diagonal matrix of sensitivity map of the lth coil,

l = 1, . . . , L, F = IL ⊗ Fu, Fu ∈ C
M×N is the Fourier en-

coding matrix corresponding to a nonCartesian (undersampled) k-
space trajectory, ⊗ denotes the Kronecker product, d ∈ C

ML is the
acquired (undersampled) measurements from all L coils, (·)′ rep-
resents (hermitian) transpose of a (complex) vector or matrix, IL
is the identity matrix of size L, Ψ is a suitable convex regularizer,
R ∈ R

P×N , P ≥ N , represents a regularization operator (e.g.,
finite differences) and λ > 0 is the regularization parameter. In
(1), we ignore field inhomogeneity and relaxation effects and as-
sume that a suitable whitening procedure has been applied for tack-
ling correlated noise [3, App. B]. Problem P0 is nontrivial and de-
mands computation-intensive nonlinear optimization when Ψ is a
nonquadratic regularizer, e.g., edge-preserving total variation (TV)
or an ℓ1-regularizer that promotes sparsity. VS based iterative al-
gorithms [5, 7] have recently gained popularity for (parallel) MRI
reconstruction as they can effectively handle nonquadratic Ψ includ-
ing TV and ℓ1-regularizers.

2.1. The Split-Bregman Algorithm [7]
The SB method is a VS-based scheme that separates Ψ from D (1)
using an auxiliary constraint variable v and converts P0 into an
equivalent constrained problem of the form minx,v{D(d,Sx) +
λΨ(v)} s.t. v = Rx. This problem is then solved using Bregman
iterations along with an AM scheme [7]. The resulting SB algorithm

requires solving a linear system involving Gµ
△

= S′F′FS+µR⊤R
for some µ > 0 [5, Sec. IV-B] at each iteration. Although the con-
jugate gradient (CG) method can be used, it may converge slowly
depending on the condition of Gµ. This problem is further com-
pounded by the shift-variant nature of S′F′FS (for both Cartesian
and nonCartesian trajectories) that is not easily amenable to efficient
preconditioning.
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2.2. An Augmented Lagrangian Algorithm [5]
To get around Gµ in SB, we recently proposed a VS scheme in [5,
Sec. IV-B] that converts P0 to minx,u,v,w{D(d,u) + λΨ(v)} s.t.
u = Sx, v = Rw, w = x. When solved using the AL framework
and AM, this constrained problem led to an iterative algorithm in-

volving the inversion of Hµ
△

= IL⊗ (Aµ
△

= F′
uFu+µIM ) (among

other simple update steps comparable to those in the SB algorithm)
at each iteration. The advantage here is that Aµ is exactly invertible
for Cartesian trajectories using FFTs; this feature enabled acceler-
ated convergence of this algorithm over SB [5]. For nonCartesian
trajectories however there is no direct (one-step) method for invert-
ing Aµ; CG can be used with a suitable circulant preconditioner
since Aµ is Toeplitz (F′

uFu is Toeplitz for nonCartesian trajectories
ignoring field inhomogeneity and relaxation effects). However, one
has to apply such a CG-solver L times (due to the IL in H

µ
), which

can be time consuming.

3. PROPOSED APPROACH

Our aim in this work is to design an (iterative) algorithm for solv-
ing P0 (1) that admits exact inner update steps for nonCartesian
trajectories. To this end, we use a majorize-minimize approach and
construct a majorizer Jmaj such that

J(x) ≤ Jmaj(x,x
(j)), ∀ x 6= x

(j), (3)

with equality at x = x(j). So the iterative scheme

x
(j+1) = argmin

x

Jmaj(x,x
(j)) (4)

is guaranteed to (monotonically) decrease J in (1). In practice, (4)
need not be carried out explicitly; a decrease in Jmaj is sufficient
to ensure a decrease of J . Below, we describe a suitable Jmaj and
describe a minimization scheme for (4) that is based on a VS strategy
combined with the AL framework and AM similar to that in [5].
Throughout the paper, we follow the convention in [9]: if f : CN →
Ω (Ω ≡ R or C) is individually analytic with respect to x ∈ C

N and
x∗ (its complex conjugate), gradient of f with respect to x, ∇xf ,
can be evaluated treating x∗ as a constant and vice-versa [9].

3.1. Majorization of J

We begin by considering C
△

= IL ⊗ Cu, where Cu ∈ C
N×N is a

circulant matrix such that C′
uCu � F′

uFu. We discuss the choice
of Cu in Sec. 3.4. It is easy to see that S′C′C′S � S′F′F′S and

D(d,Sx) ≤ D(d,Sx(j)) + 2R{(x− x
(j))′ ∇t∗D(d,St)|

t=x
}

+ (x− x
(j))′S′

C
′
CS(x− x

(j)), (5)

where equality holds in (5) at x = x(j). The rhs of (5) can be
simplified to obtain

Dmaj(d,Sx,x
(j))

△

= 2R{−x′
S
′[F′

d+ (C′
C− F

′
F)Sx(j)]}

+ x
′
S
′
C

′
CSx+ C(x(j)), (6)

where C(x(j)) is a constant irrelevant for optimization and will be
ignored henceforth. Thus, setting

Jmaj(x,x
(j))

△

= Dmaj(d,Sx,x
(j)) + λΨ(Rx), (7)

we obtain a majorizer Jmaj that satisfies (3). Next, we attack the
minimization in (4) for Jmaj in (7).

3.2. Minimization of Jmaj

The minimization in (4) for Jmaj in (7) is still a nontrivial task, so
we apply the VS strategy in [5, Sec. IV-B] and convert (4) in to the

following equivalent constrained problem

min
z

{

Dmaj(d,u,x
(j)) + λΨ(v)

}

s.t. Bz = 0, (8)

B
△

=

[

INL 0 0 −S
0 IP −R 0
0 0 IN −IN

]

, z
△

=







u
v
w
x






. (9)

Then we use the AL framework with AM as elucidated in [5, Sec. IV-
B] to solve (8). Specifically, we construct the AL function as

L(z,ηηη)
△

= Dmaj(d,u,x
(j)) + λΨ(v) + µ‖Bz− ηηη‖2ΛΛΛ, (10)

where ηηη
△

= [ρρρ′ ϑϑϑ′ωωω′]′ is the Lagrange-multiplier-like vector for the

constraints in (8), ΛΛΛ
△

= diag{INL, νIP , τIN} and µ, ν, τ > 0 are
AL penalty parameters. The AL technique with AM in [5, Sec. IV-
B] leads to the following iterative scheme for solving (8): at jth

iteration of (4), we set x(j,1) ← x(j) and run the following for k =
1, . . . ,K:

u
(j,k+1) = (C′

C+ µINL)
−1

[

F′d+ (C′C− F′F)Sx(j)

+µ(Sx(j,k) + ρρρ(j,k))

]

, (11)

v
(j,k+1) = argmin

v

λ

µν
Ψ(v) + ‖v −Rw

(j,k) − ϑϑϑ(j,k)‖22, (12)

w
(j,k+1) = (R′

R+ τ/νIN)−1

[

R′(v(j,k+1) −ϑϑϑ(j,k))

+τ/ν(x(j,k) +ωωω(j,k))

]

, (13)

x
(j,k+1) = (S′

S+ τIN )−1

[

S′(u(j,k+1) − ρρρ(j,k))

+τ (w(j,k+1) −ωωω(j,k))

]

, (14)

ηηη(j,k+1) = ηηη(j,k) −Bz
(j,k+1). (15)

The u(k+1) update (11) can be implemented using FFTs since C′C
is circulant. Similarly, if R′R is circulant (finite differences or

frames with periodic boundary extension), w(k+1) (13) can also be

computed using FFTs. The x(j,k+1) update (14) is trivial since S′S

is diagonal and finally, the v(k+1) update (12) admits a closed-form
solution for a variety of regularizers Ψ [5, Sec. IV-A], e.g., scalar-
shrinkage for ℓ1-regularization and vector-shrinkage for TV [5, 7].

Equations (4) and (11)-(15) constitute our MAMAL algorithm for
solving P0 (1). The main steps (11)-(14) can be implemented either
directly (closed-form) or efficiently unlike the SB or AL algorithms
discussed in Secs. 2.1 and 2.2, respectively. At the end of K itera-

tions of (11)-(15), we set x(j+1) ← x(j,K). We also found in our

experiments that it is better to set ηηη(j+1,1) ← ηηη(j,K) (warm-starting)

rather than ηηη(j+1,1) = 0 before each j-iteration (4).

3.3. Acceleration Using a Two-Step Procedure

The MM feature of MAMAL provides a natural framework for incor-
porating the two-step (TS) procedure discussed in [6, Sec. 4]. To
combine MAMAL with TS we replace (4) with the following:

x
(j+1) = argmin

x

Jmaj(x,y
(j)), (16)

y
(j) = x

(j) + (aj − 1)/aj+1(x
(j) − x

(j−1)), (17)

where aj+1 =
[

1 +
√

1 + 4a2
j

]

/2 and a1 = 1. The above TS

scheme evaluates Jmaj at y(j) that is a combination of two iterates,

x(j) and x(j−1), and hence the phrase “two-step.” Using the above

TS procedure simply amounts to replacing x(j) in the rhs of (11)

with y(j) from (17). We demonstrate in our experiments that com-
bining MAMAL with TS (MALTS) accelerates its convergence.
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Fig. 1. Simulation with the Analytical Shepp-Logan phantom [10]:

(a) Discretized (512 × 512) noisefree phantom; (b) SoS of conju-

gate phase reconstruction with density compensation (initial esti-

mate x(1)); (c) TV-regularized SENSE reconstruction result [solu-

tion x(⋆) of P0 (1)]; (d) Absolute difference between (a) and (c).
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Fig. 2. Plot of NRMSD between x(j) and a solution x(⋆) of P0 (1)

for simulation with the Analytical Shepp-Logan phantom [10].

3.4. Choice of Cu

Ideally, we would to like use Cu = argminC tr{C′C} s.t. C′C �
F′F, but this is difficult to obtain. So we use a simpler alternative
where we start fromCFrob � 0, the optimal circulant approximation
to F′

uFu in Frobenius-norm [11], and construct Cκ ≻ 0 from CFrob

with condition number κ (by increasing the smallest eigenvalue of
CFrob accordingly). We used a condition number of κ = 100 in

all experiments. We then set Cu
△

= (αCκ)
1

2 , where α satisfies
αCκ � F′

uFu. Such an α is only trajectory dependent (via Fu) and
can be easily precomputed using the Power method.

4. SIMULATIONS

We implemented and compared the following algorithms in Matlab:

1. BOS: Bregman operator splitting method [8],

2. SB-n [7] withn PCG iterations involving (CFrob+µR′R)−1

as the preconditioner for solving the linear system mentioned
in Sec. 2.1,

3. AL-n [5, Sec. IV-B] withn PCG iterations involving (CFrob+
µIN )−1 as the preconditioner for solving the linear system
mentioned in Sec. 2.2,

4. Proposed MAMAL-K with K iterations of (11)-(15),

5. Proposed MALTS-K with K iterations of (11)-(15).

Since we run only a finite number of iterations, K, of (11)-(15),
MALTS can be sensitive to the TS procedure, so we set aj = 1
(17) for j = 25m, m ≥ 1, to avoid instabilities arising due to
(17). However, MAMAL is guaranteed to decrease the cost J in (1)
monotonically even with a finite K as discussed in Sec. 3.

All of the above algorithms are based on VS and AL strategies,
so they require selection of appropriate AL penalty parameters (that
do not influence the solution of P0 but govern only their conver-
gence speeds), e.g., µ > 0 in SB and BOS, and µ, ν, τ > 0 in
AL, MAMAL and MALTS. To be fair to all algorithms in the selec-

tion of AL penalty parameters, we focussed on v(·) update (12) that
is common to all of the above algorithms and set µ = λ/γ for SB
and BOS and µ = λ/(γν) for AL, MAMAL and MALTS for some

γ > 0 discussed below. These choices ensured that Ψ in the v(·)

update (12) was weighted by the same γ for all algorithms. For
AL, MAMAL and MALTS, we further fixed τ = median{si}, where

{si} are the diagonal elements of S′S and ν = σ−1
max{R

′R}, where
σmax{R

′R} is the maximum eigenvalue of R′R, in all our exper-
iments. We ran the algorithms on a PC with quad-core 3.07 GHz
Intel Xeon processor. We quantified the convergence speed of the
algorithms in terms of the normalized root mean squared distance

(NRMSD) between an iterate x(j) and a solution x(⋆) (1) computed

as 20 log10(‖x
(j) − x(⋆)‖2/‖x

(⋆)‖2). We obtained x(⋆) numeri-
cally by running 1000 iterations of SB-10 in all experiments. In
all algorithms, we used NUFFT [2] for products with Fu, while
for those with F′

uFu, we used the “embedding-toeplitz-in-circulant”
trick, i.e., F′

uFu = Z′QZ, where Z is a 2N ×N zero-padding ma-
trix and Q is an appropriate 2N × 2N circulant matrix [12]. We
used a sum-of-squares (SoS) combination of the conjugate phase

reconstruction (CPR) F′Wd as the initialization x(1) for all algo-
rithms, where W is a diagonal matrix of suitable density compensa-

tion weights. We set u(1) = Sx(1), w(1) = x(1), v(1) = Rw(1)

and ηηη(1) = 0 in (11)-(15).

We used a radial trajectory with 16 spokes each with 512 sam-
ples and generated noisy data d (1) of 40 dB SNR for L = 8 coils us-
ing simulated coil-sensitivities [13] and the analytical Shepp-Logan
phantom (FOV=15 cm) [10]. We also simulated 32 × 32 Cartesian
noisy k-space data dcart of same SNR for all L = 8 coils and used
dcart to estimate S (1) with the method described in [14]. We used
the TV regularizer (with finite differences for R) for which we set γ

discussed earlier such that 90% of the elements of (Rw(1) + ϑϑϑ(1))
were nonzero after vector-shrinkage operation at (12) for TV. The

512 × 512 TV-regularized solution x(⋆) to P0 (1), Fig. 1c, has less
artifacts than CPR, Fig. 1b, and closely resembles the oracle noise-
free (discretized) phantom, Fig. 1a. The difference image, Fig. 1d,

indicates that x(⋆) has captured most of the smooth details of the
original phantom, but has some (structured) residual error. We ran
the algorithms listed above, computed and plotted NRMSD as a
function of run-time for each algorithm in Fig. 2. The proposed
MAMAL is faster than both SB and BOS and is comparable to AL

during the initial few iterations. MALTS decreases NRMSD rela-
tively rapidly compared to all algorithms providing accelerated con-
vergence in this experiment.

In the next experiment, we generated noisy data of 50 dB SNR
for L = 8 coils (using simulated coil-sensitivities [13]) by apply-
ing NUFFT to a 2048 × 2048 T2-weighted image (interpolated
from a noisefree 256× 256 Brainweb [15] T2-weighted MR image,
FOV=25 cm). We used a variable-density spiral with 5 interleaves
(reduction factor = 5/3 at the center and 5 at outer k-space). We
again simulated 32× 32 Cartesian noisy k-space data dcart of same
SNR for all L = 8 coils and used the method described in [14]
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Fig. 3. Simulation with a BrainWeb [15] T2-weighted MRI image:

(a) Noisefree (256 × 256) T2-weighted image; (b) SoS of conju-

gate phase reconstruction with density compensation (initial esti-

mate x(1)); (c) ℓ1-regularized SENSE reconstruction result [solution

x(⋆) of P0 (1)]; (d) Absolute difference between (a) and (c).
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Fig. 4. Plot of NRMSD between x(j) and a solution x(⋆) of P0 (1)

for simulation with a BrainWeb [15] T2-weighted MRI image.

to estimate S from dcart. We used an ℓ1-regularizer (2-levels of
Haar frame for R) and set γ such that 90% of the elements of

(Rw(1) + ϑϑϑ(1)) were nonzero after scalar-shrinkage operation at

(12). The 256× 256 ℓ1-regularized solution x(⋆) to P0 (1), Fig. 3c,
has reduced artifacts compared to CPR, Fig. 3b, and is visually
comparable to the noisefree Brainweb image, Fig. 3a, while the

difference image, Fig. 3d, indicates that x(⋆) has relatively more
(structured) residual error in this experiment. Fig. 4 plots NRMSD
as a function of run-time for all the considered algorithms. BOS is
the slowest, while the proposed MAMAL is slower than AL and SB.
However, MALTS decreases NRMSD more rapidly than all other
algorithms indicating its superior convergence speed.

5. CONCLUSION

We proposed an iterative algorithm for Regularized SENSE recon-
struction for nonCartesian trajectories using the majorize-minimize
(MM) principle and a variable splitting (VS) strategy [5]. Specif-
ically, we designed a majorizer involving a circulant matrix for
the SENSE data-fidelity term. Combined with the augmented La-
grangian (AL) framework and alternating minimization [5], this
majorizer led to an iterative MAMAL algorithm that requires only

one pair of NUFFT/iNUFFT per (outer) iteration, admits simple
update steps that can be implemented efficiently or in closed-form
and can efficiently tackle a variety of convex regularizers including
TV and those based on the ℓ1-norm. We also incorporated a two-
step (TS) strategy [6] to accelerate MAMAL: the resulting MALTS

algorithm converged faster than some of the recent state-of-the-art
VS-based algorithms such as the split-Bregman and the Bregman
operator splitting methods. The proposed MALTS algorithm has po-
tential for Regularized SENSE reconstruction for 3-D nonCartesian
trajectories.
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