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ABSTRACT

Variational methods are useful for solving ill-posed inverse imaging problems by minimizing a cost function
with a data fidelity term and a regularization term. For statistical X-ray computed tomography (CT) image
reconstruction, penalized weighted least-squares (PWLS) criteria with edge-preserving regularization can im-
prove quality of the reconstructed image compared to traditional filtered back-projection (FBP) reconstruction.
Nevertheless, the huge dynamic range of the statistical weights used in PWLS image reconstruction leads to a
highly shift-variant local impulse response, making effective preconditioning difficult. To overcome this problem,
iterative algorithms based on variable splitting were proposed recently.1,2 However, existing splitting-based it-
erative algorithms do not consider the (unknown) gain fluctuations that can occur between views.3 This paper
proposes a new variational formulation for splitting-based iterative algorithms where the unknown gain param-
eter vector and the image are estimated jointly with just simple changes to the original algorithms. Simulations
show that the proposed algorithm greatly reduces the shading artifacts caused by gain fluctuations yet with
almost unchanged computational complexity per iteration.

1. INTRODUCTION

The effective X-ray source intensity in CT scan can fluctuate from view to view due to the attenuation of thin
items like sheets that partially block reference channels. Thibault et al. proposed to modify the cost function
so that it depends on both the unknown image x and an unknown gain parameter vector g, where [g]k denotes
the gain fluctuation of the kth view, and to minimize jointly over both x and g by solving the following convex
optimization problem:3

(x̂, ĝ) ∈ argmin
x,g

{
Ψ(x,g) , 1

2 ∥y −Ax− g ⊗ 1∥2W + R(x)
}
, (1)

where y denotes the noisy post-logarithm sinogram that may suffer from gain fluctuations, A denotes the
system matrix, W denotes the diagonal weighting matrix that accounts for measurement variance, ⊗ denotes
the Kronecker product operator, 1 denotes the vector with all entries equal to unity and of length equal to
the number of beams, and R is an edge-preserving regularizer. Compared with Eq. (1), existing splitting-based
iterative algorithms reconstruct image without considering the effect of g, or equivalently, setting g to be 0. This
introduces visible shading artifacts as shown in Figure 2c. We propose splitting-based iterative algorithms based
on a simplification of the joint cost function in Eq. (1) that improves image quality compared to conventional
splitting-based iterative algorithms1,2 that assume g = 0.

2. METHOD

2.1 Joint gain-image estimation for X-ray CT image reconstruction

Let yk, Ak, and Wk for k = 1, . . . ,K denote data, system matrix, and diagonal weighting matrix associated
with the kth view in a CT scan, respectively. The optimization problem in Eq. (1) is equivalent to

(x̂, ĝ) ∈ argmin
x,g

{∑K
k=1

1
2 ∥yk −Akx− gk1∥2Wk

+ R(x)
}

= argmin
x

{∑K
k=1

1
2 min

gk

{
∥yk −Akx− gk1∥2Wk

}
+ R(x)

}
. (2)
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The inner 1D minimization problem in Eq. (2) has minimizer

ĝk(x) =
1⊤Wk(yk−Akx)

1⊤Wk1
(3)

with minimum

∥yk −Akx− ĝk(x)1∥2Wk
=

∥∥∥(I− 11⊤Wk

1⊤Wk1

)
(yk −Akx)

∥∥∥2
Wk

= ∥yk −Akx∥2W̃k
, (4)

where we define the following positive semi-definite symmetric “diagonal + rank-1” weighting matrix:

W̃k = Wk − Wk11
⊤Wk

1⊤Wk1
. (5)

Plugging Eq. (4) into Eq. (2) yields the following problem formulation that is equivalent to Eq. (1) yet also
equivalent to the kind of cost function used in “conventional” splitting-based iterative algorithms except that it
uses a non-diagonal weighting matrix:

x̂ ∈ argmin
x

{
Ψ(x) , 1

2 ∥y −Ax∥2W̃ + R(x)
}
, (6)

where W̃ is a block diagonal matrix with block described in Eq. (5). Since W̃ is positive semi-definite, Eq. (6)
is a convex optimization problem, and any existing optimization methods such as nonlinear conjugate gradient4

(NCG), ordered subsets algorithm5 (OS), and fast iterative shrinkage-thresholding algorithm6 (FISTA) are
still applicable. Here, we propose to solve Eq. (6) by using splitting-based iterative algorithms2,7 with variable
splitting involving the sinogram u = Ax. The subproblem of u has a closed form solution:

u(j+1) = D−1
ρ

(
W̃y + ρ

(
Ax(j+1) + d(j)

))
, (7)

where Dρ , W̃ + ρI, and d is the scaled dual variable of u in the alternating direction method of multipliers8

(ADMM). When there is no gain correction, i.e., g = 0, Dρ is a diagonal matrix, and Eq. (7) can be computed
efficiently in O(S), where S is the size of the sinogram. When there is gain correction, i.e., g ̸= 0, Dρ is block
diagonal matrix with block:

Dρ,k = (Wk + ρI) +

(
−wk

1⊤wk

)
w⊤

k , (8)

where wk , Wk1 is the diagonal entries of Wk. The inverse of Dρ will also be a block diagonal matrix with
block:

(Dρ,k)
−1

= (Wk + ρI)
−1

+
(Wk + ρI)

−1
wkw

⊤
k (Wk + ρI)

−1

1⊤wk −w⊤
k (Wk + ρI)

−1
wk

(9)

by the Sherman-Morrison formula. Note that the matrix-vector multiplication of (Dρ,k)
−1

and a vector of
proper size involves only componentwise division, vector inner product, and vector outer product. Therefore,
the computational complexity of Eq. (7) is still O(S) in the presence of gain correction. That is, we can estimate
the unknown gain parameter vector and the image jointly with almost unchanged computational complexity per
iteration.

2.2 Applying prior knowledge of gain parameter to the joint gain-image estimation

The optimization problem described in Eq. (1) can be thought of as an X-ray CT image reconstruction with blind
gain correction since we have no prior knowledge of the gain parameter vector, and we apply gain correction to
every view. However, sometimes we do have some prior knowledge of the gain parameter vector. For example,
when the sinogram is truncated between some view angles, we know that the object is outside the field of view,
and the reference channels might be blocked by the object in these views with high probability. Hence, it is
better to apply gain correction to these views. Similarly, when the object is well bounded in the field of view in
some view angles, i.e., the projection is not truncated, the reference channel is less likely to be blocked, and we
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can turn off gain corrections in these views. To incorporate such prior knowledge about the support of the gain
parameter vector, we propose a constrained optimization problem for non-blind gain correction:

(x̂, ĝ) ∈ argmin
x,g

{
Ψ(x,g) , 1

2 ∥y −Ax− g ⊗ 1∥2W + R(x)
}

s.t. [g]k/∈K = 0 , (10)

where K ⊆ {1, . . . ,K} is the index set of the candidate views which may suffer from gain fluctuations. Note that
since the gain fluctuations are assumed to be only view-dependent, following the same procedure in the blind
case, we can get exactly the same equivalent problem formulation as in Eq. (6), where W̃ is a block diagonal
matrix with block:

W̃k =

{
Wk , if k /∈ K
Wk − Wk11

⊤Wk

1⊤Wk1
, otherwise .

(11)

When we solve the X-ray CT image reconstruction with non-blind gain correction using splitting-based methods
with variable splitting involving the sinogram, we will solve the subproblem of u using Eq. (7), where (Dρ)

−1
is

a block diagonal matrix with block:

(Dρ,k)
−1

= (Wk + ρI)
−1

+
(Wk + ρI)

−1
wkw

⊤
k (Wk + ρI)

−1

1⊤wk −w⊤
k (Wk + ρI)

−1
wk

1k∈K , (12)

where 1k∈K is the indicator function of K. Clearly, when K = ∅, it reduces to the X-ray CT image reconstruction
without gain correction; when K = {1, . . . ,K}, it is the X-ray CT image reconstruction with blind gain correction.
Furthermore, if desired, we can shrink the set K as the iterative algorithm proceeds. For example, we can reset
the very small estimated gain fluctuations to be zero after several iterations.

2.3 Joint gain-image estimation using other optimization methods

Although we focus on solving Eq. (6) using a splitting-based method in this paper, it can be solved by any other
optimization method. For example, the cost function in Eq. (6) has gradient

∇Ψ(x) = A⊤W̃ (Ax− y) +∇R(x) (13)

assuming that the regularization term R(x) is differentiable. This gradient can be used for any first-order method
such as NCG. One popular iterative method in X-ray CT image reconstruction is called OS5 (or in particular,
OS-SQS), which is an accelerated version of a convergent separable quadratic surrogate (SQS) algorithm. This
ordered subsets method is successful because of the high complexity of computing the forward and back-projection
in X-ray CT image reconstruction problems. The basic idea of SQS algorithm is to find a separable quadratic
surrogate function that majorizes the original cost function and to minimize it. Since the only difference between
the conventional variational formulation and our proposed formulation is the weighted least-squares (WLS) term,
we just focus on the majorizer of that part. A quadratic majorizer of a function f has the general form

f
(
x(j)

)
+

(
x− x(j)

)⊤∇f
(
x(j)

)
+ 1

2

∥∥x− x(j)
∥∥2
D

(14)

with D ≽ ∇ 2f . When f is the conventional WLS cost, one particular choice of D is5

DWLS , diag
{
|A|⊤ W |A|1

}
≽ A⊤WA . (15)

Since W ≽ W̃, we have A⊤WA ≽ A⊤W̃A. When f is the proposed WLS cost, it is clear that

DWLS ≽ A⊤W̃A , (16)

and DWLS is also a valid SQS diagonal matrix for the proposed WLS cost. Therefore, it is very easy to modify
the existing OS algorithm to enable gain correction.
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Figure 1: 2D simulation: (a) The noisy sinogram with gain fluctuations, and (b) the corresponding gain fluctua-
tions, where the horizontal and vertical axes are the radial axis (r) and the projection view angle (θ), respectively.

3. RESULTS

To evaluate our proposed method, we consider both 2D and 3D X-ray CT image reconstruction problems. In
each case, the statistical weight wi is set to be e−yi , where yi denotes the line-integral projection with gain
fluctuations. We are interested in edge-preserving regularizer R in the form:

R(x) , β
N∑

n=1

M∑
m=1

κnκn+s(m)Φ([Dmx]n) , (17)

where β is the regularization parameter, N is the number of voxels, M is the number of offsets, κn is the voxel-
dependent weight for n = 1, . . . , N , Dm is the first-order finite-difference matrix in the mth direction with offset
s(m) for m = 1, . . . ,M , and Φ is an edge-preserving potential function. We choose Φ to be the Fair potential
function ΦFP(x) , |x| /δ − ln (1 + |x| /δ) with parameter δ. Following the voxel-dependent weight proposed by
Fessler et al.,9 κn is set to be

√
[A⊤W1]n/[A⊤1]n. For 2D case, M = 2 for the horizontal and vertical neighbors;

for 3D case, M = 13 for the thirteen nearest neighbors. The minimization problem in Eq. (6) is solved by using
ADMM for 500 iterations.2 The FBP/FDK reconstruction from the gain-fluctuated noisy sinogram is used as
the initial guess x(0) for the iterative algorithm.

3.1 2D fan beam X-ray CT image reconstruction

We first consider a 2D X-ray CT image reconstruction from simulated NCAT phantom data with gain fluctuations.
We use a 256×256 2D slice of NCAT phantom to numerically generate a 444×492 gain-fluctuated noisy sinogram
with GE LightSpeed fan-beam geometry downsampled by two corresponding to a monoenergetic source with
105 incident photons per ray without background events. Two sections of angular samples suffer from gain
fluctuations due to partially blocked reference channels with 20% and 18% attenuation, respectively, as shown
in Figure 1. We set δ = 10−5 and β = 3 × 10−6 for edge-preserving regularization in this case. Figure 2
shows the true image, the initial guess, the conventional reconstruction without gain correction, the proposed
reconstruction with blind gain correction, and the reference reconstruction from a noisy sinogram without gain
fluctuations as a comparison, from left to right, top to bottom. As can be seen from Figure 2, our proposed
method greatly reduced the shading artifacts resulting from gain fluctuations. Figure 3 shows the estimated gain
parameter vector and its RMS error. As can be seen from Figure 3, our proposed method estimates the gain
parameter vector accurately, and therefore, we have a comparable reconstruction with the reconstruction from
the gain-fluctuation-free noisy sinogram as shown in Figure 2d and Figure 2e. The RMS difference between them
is about 3.12× 10−5 cm−1, which means that they are very close to each other.

3.2 3D axial X-ray CT image reconstruction

We now consider a 3D X-ray CT image reconstruction from simulated phantom data with gain fluctuations.
Assuming that the gain fluctuations are changing linearly in the angular direction and are constant in the
transaxial direction, we use a 128× 120× 100 3D phantom (cylinder bone-like inserts) to analytically generate a
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Figure 2: 2D simulation: (a) The true phantom (in cm−1), (b) the initial guess using the FBP reconstruction,
(c) the conventional reconstruction without gain correction, (d) the proposed reconstruction with blind gain
correction, and (e) the reference reconstruction from a noisy sinogram without gain fluctuations.
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Figure 3: 2D simulation: (a) The estimated gain parameter vector as a function of projection view angle, and
(b) the RMS error of the estimated gain parameter vector versus iteration.
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Figure 4: 3D simulation: (a) The true phantom (in cm−1), (b) the initial guess using the FDK reconstruction,
(c) the conventional reconstruction without gain correction, (d) the proposed reconstruction with blind gain
correction, (e) the proposed reconstruction with non-blind gain correction, and (f) the reference reconstruction
from a noisy sinogram without gain fluctuations. Each subfigure shows the middle transaxial, coronal, and
sagittal planes of the volume.

128× 120× 144 noisy sinogram with axial geometry corresponding to a monoenergetic source with 104 incident
photons per ray without background events. Then, we numerically add 2% and 5% (peak) attenuation to two
separate sections of views, respectively. In this case, we set δ = 10−3 and β = 2 × 10−3 for edge-preserving
regularization. Figure 4 shows the middle transaxial, coronal, and sagittal planes of the true image, the initial
guess, the conventional reconstruction without gain correction, the proposed reconstruction with blind gain
correction, the proposed reconstruction with non-blind gain correction, and the reference reconstruction from a
noisy sinogram without gain fluctuations as a comparison, from left to right, top to bottom. As can be seen
from Figure 4, our proposed method effectively reduced the shading artifacts under such small attenuations.
Figure 5 shows the true gain fluctuations and the estimated gain fluctuations for both blind and non-blind cases.
The estimated gain fluctuations are a little bit noisier due to the small peak attenuation and show a ringing
pattern no matter the reconstruction is blind or not. Figure 6 shows the RMS difference between the image
at the nth iteration and the converged reference reconstruction for each method. Note that all methods show
almost the same convergence rates in the early iterations before they start deviating from the solution. That is,
gain correction does not change the convergence rate of the algorithm very much but rather improves the overall
accuracy of the method.

4. CONCLUSION

In this paper, a new variational formulation for splitting-based X-ray CT image reconstruction algorithm for
jointly estimating the true gain parameter vector and the image is proposed. We evaluate our proposed method in
both 2D and 3D cases. The shading artifacts due to gain fluctuations are greatly reduced, while the computational
complexity per iteration is almost unchanged in our proposed method. Similar concepts can be applied to any
splitting-based iterative algorithm with variable splitting on the sinogram, and we are going to extend our
proposed method to other 3D X-ray CT geometries.
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Figure 5: 3D simulation: (a) the true gain fluctuations, (b) the estimated gain fluctuations for the blind case,
and (c) the estimated gain fluctuations for the non-blind case, where the horizontal and vertical axes are the
projection view angle (θ) and the transaxial axis (z), respectively.

0 100 200 300 400 500
10

−7

10
−6

10
−5

10
−4

10
−3

n (iteration)

R
M

S
D

 (
in

 c
m

−
1 )

 

 

No gain correction
Blind gain correction
Non−blind gain correction
Reference recon

Figure 6: 3D simulation: for each method, RMS difference between the image at the nth iteration and the
converged reference reconstruction.
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