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ABSTRACT

Regularized image reconstruction methods are of increasing interest
for X-ray CT imaging, but are hampered by the long computation
times of iterative algorithms. We recently developed a variable
splitting-based alternating direction method of multipliers (ADMM)
that provides superior convergence speeds for statistical X-ray CT
reconstruction compared to conventional methods. ADMM how-
ever demands storing auxiliary constraint variables and can become
memory-expensive when shift-invariant regularization operators
(e.g., finite differences) are used, especially in 3-D CT. Since an
orthonormal wavelet transform (OWT) is memory-efficient, in this
work, we employ OWT with nonquadratic regularization in ADMM
for CT reconstruction. We propose a practical strategy for perform-
ing iteration-dependent random shifting in ADMM to (partially)
compensate for the shift-variance of OWT and reduce block-artifacts
therefrom. Preliminary evaluations with a 2-D synthetic phantom
and real 2-D in-vivo human head data indicate that the proposed
strategy provides CT reconstructions that are comparable in qual-
ity to those obtained using nonquadratic regularization with finite
differences.

Index Terms— X-ray CT imaging, statistical image reconstruc-
tion, method of multipliers, alternating minimization, orthonormal
wavelet transform.

1. INTRODUCTION

Statistical X-ray CT reconstruction using penalized weighted least
squares criteria can provide improved image-quality compared to fil-
tered back-projection (FBP) [1]. The goal usually is to minimize a
cost function composed of a (statistically) weighted quadratic data-
fidelity term and a (possibly nonquadratic) regularization term Ψ to
suppress noise,

P0 : argmin
x

{
J(x)

�

=
1

2
‖y −Ax‖2W +Ψ(Rx)

}
, (1)

where y is the M × 1 data vector (log of transmission data), A is
the M × N system matrix, Ax represents the forward projection
operation (e.g., line integrals), W = diag{wi} is a M × M diag-
onal matrix consisting of statistical weights (for simplicity we used
wi = e−yi in our experiments), ‖u‖2W

�

= u�Wu and R denotes a
regularization operator with shift-invariant blocks, e.g., finite differ-
ences, wavelet frames, etc.

Conventional gradient-descent methods (e.g., nonlinear conju-
gate gradient) for P0 depend on the Hessian A�WA that is highly
shift-variant in CT particularly due to the large dynamic range of
{wi}. As a result, it becomes difficult to precondition and accelerate
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such methods [2]. We recently introduced an iterative algorithm—
alternating direction method of multipliers (ADMM) [3]—to cir-
cumvent this difficulty. The philosophy underlying ADMM is to
convert P0 in to an equivalent constrained problem using variable
splitting [3]:

min
x,u,v

{
1

2
‖y − u‖2W +Ψ(v)} s.t. u = Ax, v = Rx, (2)

where u, v are auxiliary constraint variables: u “isolates” the shift-
variant component W from Ax and v splits the regularization term
in P0, respectively. The constrained problem (2) is then solved in an
augmented Lagrangian (AL) framework with alternating minimiza-
tion that decouples (2) in terms of u, v and x. As a result, ADMM
involves simple operations such as inverting a diagonal matrix, min-
imizing 1-D denoising cost functions, and the solving of a “nearly”
shift-invariant linear system [3] that is amenable to FFT-based pre-
conditioning using cone-type filters [4]. These key features enable
accelerated convergence of ADMM as demonstrated in [3]. Since
ADMM is based on the AL framework, it requires storing the con-
straint variables (u,v) and associated Lagrange multiplier vectors at
each iteration [3, Sec. III, VI-A]. When R is a “tall” matrix of large
proportions (e.g., finite differences along many directions), storing
v (and its Lagrange multiplier) can represent a significant memory
overhead, especially in 3-D CT.

In this work, we propose to use regularizers involving orthonor-
mal wavelet transform (OWT) for P0 as OWT requires relatively
less memory compared to products with (a “tall”) R. OWTs how-
ever are shift-variant and tend to yield block-artifacts in reconstruc-
tions [5]. Iteration-dependent random shifting (IDRS) [5] is a sim-
ple means of reducing block-artifacts due to OWTs and has been
successfully used for image restoration [5] and MRI reconstruction
[6] in conjunction with iterative shrinkage-thresholding (IST) type
methods. Here, we present a strategy to incorporate IDRS in ADMM
for statistical CT reconstruction using OWT-based regularizers. We
show that the proposed strategy (with OWT and IDRS) retains the
efficacy of the ADMM originally developed in [3] and demonstrate
with experiments on a 2-D synthetic phantom and real 2-D in-vivo
human head data that it yields CT reconstructions that are compa-
rable in quality to those obtained using nonquadratic regularizers
(e.g., total variation) with shift-invariant operators such as finite dif-
ferences. The proposed method can also be readily applied to 3-D
CT using a 3-D OWT.

2. ALTERNATING DIRECTION METHOD OF
MULTIPLIERS (ADMM)

We summarize1 below the ADMM developed in [3] for solving P0.
At iteration j, one performs:

1Detailed derivation of ADMM, convergence theory and empirical rules
for setting μ and ν are available in [3].
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x
(j+1) = G

−1
ν (A�(u(j) − η

(j)
u ) + νR�(v(j) − η

(j)
v )), (3)

u
(j+1) = D

−1
μ (Wy + μ�(j)

u ), (4)

v
(j+1) = dΨ{�

(j)
v }

�

= argmin
v

{
Ψ(v) +

μν

2
‖v − �

(j)
v ‖22

}
, (5)

η
(j+1)
u = �

(j)
u − u

(j+1), (6)

η
(j+1)
v = �

(j)
v − v

(j+1), (7)

where η
(·)
u , η(·)

v are Lagrange-multiplier-like vectors for the con-
straints in (2), �(j)

u

�

= Ax(j+1) + η
(j)
u , �(j)

v

�

= Rx(j+1) + η
(j)
v ,

μ > 0, ν > 0 are parameters1 that govern only the convergence
speed of the algorithm, Gν

�

= (A�A+νR�R), Dμ
�

= (W+μIM )
and IM is the identity matrix of size M . Since W is diagonal, Dμ

is also diagonal and can be inverted exactly in (4). The term A�A

in Gν is “nearly” shift-invariant [4] (unlike A�WA), so for R such
that R�R is shift-invariant, an iterative solver such as the conjugate
gradient (CG) method for (3) is amenable to FFT-based precondi-
tioning using suitable cone filters [4].

Moreover, v (2) leads to the denoising problem (5) (represented
by a denoising operator dΨ) that can be solved exactly for several
instances of Ψ [7, Sec. 4] including popular criteria such as total
variation (TV):

ΨTV(Rx) = λ
∑
r

√√√√P−1∑
p=0

|[Rp x]r|
2, (8)

�1-regularization:

Ψ�1(Rx) = λ
∑
r

|[Rx]r| , (9)

and smoothed-Laplacian (SL) that has been successfully used in to-
mography [2]:

ΨSL(Rx) = λ
∑
r

ΦSL (|[Rx]r|) , (10)

where λ > 0 is the regularization parameter, ΦSL(x) = x/δ −

log(1 + x/δ), δ > 0 [2] and R
�

= [R0
� · · ·RP−1

�]� is a block
matrix of N × N shift-invariant regularization operators Rp (e.g.,
finite differences). For the regularizers in (8)-(10), it can be shown
that (5) decouples in terms of the components, {vr} and �

(j)
v,r, of v

and �
(j)
v , respectively, i.e., v(j+1)

r = dΨ(�
(j)
v,r), r = 0 . . . PN − 1

[8], and leads to the following respective mappings [8]:

dΨTV
(�(j)v,r) = �(j)v,r max

(
1−

λ

μνβ
(j)
r

, 0

)
, (11)

dΨ�1
(�(j)v,r) = sign{�(j)v,r}max

(
|�(j)v,r| −

λ

μν
, 0

)
, (12)

dΨSL
(�(j)v,r) = sign{�(j)v,r}

ζ
(j)
r +

√
(ζ

(j)
r )2 + 4δ|�

(j)
v,r|

2
, (13)

where, for r = 0 . . . PN − 1, ζ(j)r
�

= |�
(j)
v,r| − δ − λ/(δμν) and

β
(j)
r

�

=

√√√√P−1∑
p=0

|�
(i)
v,pN+(r modN)|

2.

In addition to the N × 1 reconstruction x(·), ADMM also re-
quires storing the M × 1 vectors u(·), η(·)

u and the PN × 1 vectors
v(·), η(·)

v . Depending on the type of scanner geometry and recon-
struction setup, PN > M � N . For instance, in 3-D CT, when
finite-differences are used for R with P = 13 (there are 13 nearest-
neighbors on one side of any voxel), v(·), η(·)

v together correspond

1. Select x(0), S(0), μ, ν > 0 and set j = 0
2. Set u(0)=Ax(0), v̂(0)=WS

(0)x(0), and η
(0)
u =η

(0)
v̂

=0

Repeat:
3. Obtain x(j+1) by applying preconditioned CG to (20)
4. Compute u(j+1) using (4)

5. Compute v̂(j+1) using (21) with W̃
(j)

= WS
(j)

6. Update η(j+1)
u using (5)

7. Update η(j+1)
v̂

using (22)
8. Set j = j + 1
Until stop criterion is met

Fig. 1. ADMM with IDRS for statistical X-ray CT reconstruction
using OWT. The algorithm uses a pregenerated sequence of random
translations represented by {S(j)}j .

to 26 image-volumes: storing v(·), η(·)
v might thus set a practical

limitation on the applicability of ADMM for R (with shift-invariant
blocks), especially in 3-D CT.

3. PROPOSED STRATEGY

3.1. Orthonormal Wavelets for CT Reconstruction Using ADMM

We propose to use orthonormal wavelet transform (OWT) as a
memory-efficient alternative to R for CT reconstruction using
ADMM. OWT has several attractive properties (e.g., regularity,
sparsity) including its ability to represent an image at multiple
scales. For brevity, we consider the following nonquadratic regular-
izers with an OWT denoted by the N ×N matrix W :

Ψ�1,W(Wx) =
N∑

r=1

λr |[W x]r| , (14)

ΨSL,W(Wx) =
N∑

r=1

λrΦSL (|[W x]r|) , (15)

where {λr}
N
r=1 are scale-dependent regularization parameters that

offer the flexibility of excluding the approximation coefficients (this
can be achieved by setting λr = 0 corresponding to the approxima-
tion coefficients) from Ψ�1,W and ΨSL,W as these coefficients are
not sparse.

We employ v̄ = Wx in (2), so that v̄(·) and η
(·)
v̄ in the cor-

responding ADMM are of the same size as the reconstruction x(·)

and require relatively less storage compared to v(·) and η
(·)
v that are

associated with R. The denoising rules (12)-(13) are also applicable
for the regularizers (14)-(15), respectively, at Step (5). Moreover, or-
thonormality ofW (i.e.,W�

W = IN ) facilitates Step (3) sinceGν

in (3) becomes Gν,W
�

= (A�A+ νW�
W) = (A�A+ νIN) that

is still “nearly” shift-invariant and can be effectively preconditioned
using cone-type filters [4]. Thus, (3)-(7) can be directly employed
for regularized statistical CT reconstruction using (14)-(15).

3.2. Iteration-Dependent Random Shifting (IDRS)

While OWT is appealing from the standpoint of memory, its shift-
variant nature can lead to block-artifacts in the reconstruction [5, 6].
Iteration dependent random shifting (IDRS) [5] is a simple tech-
nique to partially compensate for the shift-variance of OWT. The
idea underlying IDRS is to first apply a (random) translation (at
each iteration) to the reconstruction (x(·)), then perform nonlinear
processing associated with the reconstruction algorithm and finally
undo the translation before proceeding to the next iteration. IDRS is
computationally efficient as it only requires trivial translation oper-
ations and is easily incorporated in iterative shrinkage-thresholding
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Fig. 2. Simulation (color scale is in
cm−1): (a) True NCAT phantom,
(b) FBP reconstruction with Han-
ning filter (RMSE = 0.0322 cm−1),
and reconstructions obtained using
ADMM with (c) Ψ�1,W (14) and
no IDRS (0.0294 cm−1), (d) Ψ�1,W

(15) with IDRS (proposed strategy,
0.0214 cm−1), (e) Ψ�1 (10) with finite
differences (0.0194 cm−1) and (f) total
variation (TV, 0.0198 cm−1). The
proposed method with OWT and IDRS
produces a reconstruction (d) compara-
ble to (e) and (f) obtained, respectively,
using �1- and TV-regularizers with finite
differences.

(IST) type algorithms [5, 6]. However, using IDRS with ADMM
for OWT-based regularizers (14)-(15) is slightly more involved as
ADMM (3)-(7) employs additional constraint variables. Below, we
present a practical strategy to integrate IDRS in ADMM.

Let S represent a generic N × N (block) permutation matrix
such thatSx is a (randomly) translated version ofx. By construction
S is an orthonormal matrix, i.e., S�

S = SS
� = IN , since S

�

undoes the effect of S and vice-versa. We then consider (14)-(15)
with Sx (as we want to “induce” shift-invariance in these OWT-
based regularizers), which is equivalent to replacing W with W̃ =

WS in (14)-(15). Correspondingly, we use ṽ = W̃x in (2) that
leads to a scheme similar to (3)-(7) but with the following respective
update rules for Steps (3), (5), and (7):

x
(j+1) = G

−1

ν,W̃
(A�(u(j) − η

(j)
u ) + νW̃�(ṽ(j) − η

(j)
ṽ

)), (16)

ṽ
(j+1) = argmin

v

{
Ψ

·,W̃
(v) +

μν

2
‖v − �

(j)
ṽ

‖22

}
, (17)

η
(j+1)
ṽ

= �
(j)
ṽ

− ṽ
(j+1), (18)

where η
(j)
ṽ

is the Lagrange-multiplier-like vector associated with

ṽ(j), �(j)
ṽ

�

= W̃x(j+1) + η
(j)
ṽ

, and G
ν,W̃

�

= (A�A + νW̃�
W̃).

Since W and S are both orthonormal, W̃�
W̃ = S

�
W

�
WS =

IN , so we have that

G
ν,W̃

= (A�
A+ νIN ) = Gν,W . (19)

Using the fact that W̃
−1

= W̃
� (orthonormality of W̃), and v̂(·) �

=

W̃
�ṽ(·), η(·)

v̂

�

= W̃
�
η
(·)
ṽ

, (16)-(18) can be written, respectively, as

x
(j+1) = G

−1
ν,W (A�(u(j) − η

(j)
u ) + ν(v̂(j) − η

(j)
v̂

)), (20)

v̂
(j+1) = W̃

� ×(
argmin

v

{
Ψ

·,W̃
(v)

+μν

2
‖v − W̃(x(j+1) + η

(j)
v̂

)‖22

})
, (21)

η
(j+1)
v̂

= η
(j)
v̂

− (v̂(j+1) − x
(j+1)), (22)

Due to the “nearly” shift-invariant structure of Gν,W (19), cone-
filter-type preconditioners can again be used to accelerate CG-based
solvers for (20). For the OWT-based regularizers (14)-(15), denois-

ing rules (12)-(13) can be respectively used for solving (21). We
see that the (random) translation (included in W̃) is introduced in
the input (i.e., W̃(x(j+1) + η

(j)
v̂

)) to the denoising step (21) and is

undone in the same step (using W̃
�) after performing the denoising

operation, this is somewhat similar to how IDRS is typically applied
to IST-type algorithms [5, 6]. Finally, since the development (16)-
(22) applies to a generic S, we can employ a different S(j) (and

correspondingly, W̃
(j)

= WS
(j)) at each iteration as suggested

in [5], thus leading to the ADMM algorithm with IDRS in Fig. 1 for
CT reconstruction using OWT-based regularizers.

4. EXPERIMENTAL RESULTS

As a preliminary evaluation, we performed simulations with a
1024 × 1024 2-D slice of the NCAT phantom [9] and experiments
with a 2-D in-vivo human head data-set (888× 984-view sinogram)
acquired with a GE scanner using 120 kVp source potential, 585
mA tube current and 0.6 s rotation. We used the DD-projector [10]
(with 8 threads) for implementing matrix-vector products such as
Ax, A�u and initialized ADMM with the image reconstructed
using FBP with the ramp filter. Computation time (per iteration)
of ADMM (scheme (3)-(7) and the proposed method in Fig. 1) is
dominated by products with A and A� in (3) and (20), and is sim-
ilar for the considered regularizers (8)-(10) and (14)-(15). So we
concentrated on the image quality instead. We ran 100 iterations of
ADMM (3)-(7) for regularizers (8)-(10) with finite-differences for
R and the proposed scheme in Fig. (1) for (14)-(15) with 3 levels of
the orthonormal Haar wavelet transform for W . We applied 2 CG
iterations with appropriate cone-filter-type preconditioners [3] for
“solving” (3) and (20), respectively. We set λr = λ and excluded
the approximation coefficients in (14)-(15).

In our simulations, we numerically generated a 888× 984-view
noisy sinogram with GE LightSpeed fan-beam geometry [3] corre-
sponding to a monoenergetic source with 2.5×104 incident photons
per ray and no background events. We reconstructed 512× 512 im-
ages over a FOV of 65 cm. For the regularized methods, we chose λ
by minimizing the RMSE between the true noisefree phantom (Fig.
2a) and the corresponding regularized reconstructions (Figs. 2c-2f).
For completeness, we include FBP reconstruction (Fig. 2b, obtained
using Hanning filter) that is blurred and streaked with artifacts. The
�1-regularized (using Ψ�1 (9)) and TV-regularized reconstructions
(Figs. 2e, 2f, respectively) have reduced noise, RMSE, and artifacts.
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Fig. 3. Experiment with in-vivo human
head data (color scale is in Hounsfield
units): FBP reconstructions with (a)
ramp filter, (b) Hanning filter, and reg-
ularized reconstructions obtained using
ADMM with (c) ΨSL,W (15) and no
IDRS, (d) ΨSL,W (15) with IDRS (pro-
posed strategy), (e) ΨSL (10) with finite
differences and (f) total variation (TV).
Reconstruction (f) is “patchy” indicat-
ing that (strongly edge-preserving) TV
is less appealing for this data. The pro-
posed method with OWT (and smooth
edge-preserving ΨSL,W) produces a re-
construction (d) comparable to (e) ob-
tained with ΨSL (10) and finite differ-
ences.

Using Ψ�1,W (14) without IDRS leads to a reconstruction (Fig. 2c)
with shading artifacts and higher RMSE, while the proposed method
(using Ψ�1,W (14) with IDRS) yields a reconstruction (Fig. 2d) that
is comparable in quality and RMSE to those in Figs. 2e, 2f.

In case of the real in-vivo human head data, we reconstructed
1024 × 1024 images with 50 cm FOV. We set δ = 10 HU in ΨSL

(10) and ΨSL,W (15), and adjusted λ manually for the regularized
methods to obtain the “best” visual quality (in terms of suppressing
noise and streak-artifacts) in each case individually. The FBP re-
constructions in Figs. 3a, 3b corresponding to the ramp and Hanning
filters, respectively, are either noisy or blurred and streaked with arti-
facts. The TV-regularized reconstruction (Fig. 3f) exhibits piecewise
constant “patches” that are due to the strongly edge-preserving na-
ture of the TV-regularizer. In contrast, the smooth edge-preserving
regularizer ΨSL (10) with finite differences provides a visually more
appealing reconstruction (Fig. 3e). The OWT-based reconstruction
(Fig. 3c) obtained using ΨSL,W (15) without IDRS exhibits noise-
like artifacts, but the proposed method (using ΨSL,W (15)) with
IDRS suppresses such artifacts and yields a reconstruction (Fig. 3d)
comparable to that in Fig. 3e obtained with ΨSL (10) and finite dif-
ferences.

5. CONCLUSIONS & DISCUSSION

Iteration-dependent random shifting (IDRS) [5] is a simple proce-
dure that can reduce block-artifacts in reconstruction problems in-
volving an orthonormal wavelet transform (OWT) [5]. In this work,
we proposed a practical scheme to incorporate IDRS in alternating
direction method of multipliers (ADMM) [3] for statistical X-ray CT
reconstruction using OWT-based regularizers. We demonstrated us-
ing experiments with a synthetic 2-D NCAT phantom and real 2-D
in-vivo human head data that the proposed method provides recon-
structions comparable in quality to those obtained using regularizers
with shift-invariant operators such as finite differences. The pro-
posed method can also be directly applied to 3-D CT using a 3-D
OWT. Reconstruction quality may further be improved in statistical
methods for CT reconstruction by using spatially-varying regulariza-
tion parameters (SVRP) [11]. We are currently implementing SVRP
in the proposed scheme with application to 3-D CT reconstruction.
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