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ABSTRACT

Regularization is an effective means of reducing noise and arti-
facts in MR image reconstruction from undersampled k-space data.
Proper application of regularization demands appropriate selec-
tion of the associated regularization parameter. Generalized cross-
validation (GCV) is a popular parameter tuning technique especially
for linear reconstruction methods, but its application to nonlinear
iterative MRI reconstruction is more involved as it demands the
evaluation of the Jacobian matrix of the reconstruction algorithm
with respect to complex-valued data. We derive analytical expres-
sions for recursively updating this Jacobian matrix for an iterative
reweighted least-squares reconstruction algorithm. Our method can
also be used to calculate a predicted risk estimate (PSURE) for
MRI based on Stein’s principle. We demonstrate with simulations
and experiments with real data that regularization parameter selec-
tion based on GCV and PSURE provides near-MSE-optimal results
for nonlinear MRI reconstruction from undersampled k-space data
using �1-regularization.

Index Terms— MRI reconstruction, regularization, cross-
validation, Stein’s unbiased risk estimate, Jacobian matrix.

1. INTRODUCTION

Magnetic resonance image (MRI) reconstruction from single-coil
undersampled k-space data is an ill-posed problem and requires
regularization to provide meaningful reconstruction results. Non-
quadratic regularizers that promote sparsity (e.g., �1-regularization)
or that preserve edges (e.g., total variation) are attractive as they can
effectively reduce noise and artifacts in the reconstruction [1]. How-
ever, a successful application of such regularization criteria demands
proper selection of associated regularization parameters that con-
trol the balance between noise-amplification and image-smoothing.
This task is generic to many regularized reconstruction problems
including that of MRI and is usually performed manually.

In this paper, we focus on two quantitative techniques: gener-
alized cross-validation (GCV) [2, 3] and the predicted form [4] of
Stein’s unbiased risk estimate [5] (PSURE), for automated selection
of the regularization parameter for iterative nonlinear MRI recon-
struction from undersampled k-space data. Both GCV and SURE-
type approaches have been used in image restoration problems, espe-
cially involving linear reconstruction algorithms [2]. Their compu-
tation for nonlinear reconstruction problems is however complicated
by the nonlinearity of the associated algorithms [3, 6–9]. Specifi-
cally, they require the evaluation of the Jacobian matrix [3, 4, 6, 8, 9]
of the estimator with respect to complex-valued MR data [4] for
MRI reconstruction. We propose to evaluate this Jacobian matrix
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for a fast variant of iterative reweighted least-squares (IRLS) algo-
rithm [1] that is gradient-based and is capable of accommodating a
variety of smooth and nonsmooth regularization criteria. To the best
of our knowledge, the derivation of this complex-valued Jacobian
matrix has not been documented for nonlinear iterative MRI recon-
struction with IRLS-type algorithms. We demonstrate using exper-
iments with realistically simulated nonCartesian MR data [10] and
with Cartesian MR data acquired with a 3T GE scanner that the use
of GCV and PSURE lead to near-optimal selections for the regular-
ization parameter for MRI reconstruction from undersampled data.

2. REGULARIZED MRI RECONSTRUCTION
2.1. Problem Formulation
We formulate regularized MRI reconstruction as a discretized opti-
mization problem,

uλ(y) = argmin
u

{
Ψ(u) =

1

2
‖y −Fu‖22 + λΨ(Ru)

}
, (1)

where the M×1 vector y represents (possibly undersampled) Carte-
sian / nonCartesian data from a single-channel receiver coil, F is
the M × N Fourier encoding matrix associated with y such that
M ≤ N , uλ(y) denotes the N × 1 reconstruction (that is an im-
plicit function of y), Ψ is a suitable regularization, R ∈ R

P×1 is a
matrix denoting the regularization operator, e.g., frames, finite dif-
ferences, etc., and λ > 0 denotes the regularization parameter. For
simplicity of exposition, we consider Ψ(Ru) =

∑P

l=1 Φ(|[Ru]l|),
where Φ is a suitable convex potential function, e.g., Φ(x) = x leads
to an �1-regularization. The methods developed in this paper can be
also extended to handle other regularizers, e.g., total variation [8].

2.2. An IRLS-MIL Algorithm
We use an iterative reweighted least-squares (IRLS) type algorithm
[1] for solving (1). IRLS-type algorithms are gradient-based and
provide a general framework for solving reconstruction problems
like (1) for a variety of regularization criteria. In the basic form of
IRLS, at iteration i, one needs to solve a linear system of equations
of the form [1]

A(i)u(i+1) = F
H
y, (2)

where A(i) = FHF + R�ΓΓΓ−1
(i)R, (·)� and (·)H represent standard

and Hermitian-transposes, respectively, ΓΓΓ(i) = diag{γγγ(i)} and the

l-th element of γγγ(i) ∈ R
P
+ is γ(i)l =

(
λ
t

dΦ(t)
dt
|t=|[Ru(i)]l|

)−1

[1,8].

For �1-regularization (i.e., Φ(x) = x), this leads to [8]

γ(i)l = λ−1|[Ru(i)]l|. (3)

To manage nonsmooth regularization (such as the considered �1-
regularization) “corner-rounding” is often administered to (2), i.e.,
a small positive constant, ε > 0, is added to {γ(i)l}l to ensure that

2049978-1-4673-2533-2/12/$26.00 ©2012 IEEE ICIP 2012



−7.77 −6.97 −6.17 −5.37 −4.57 −3.77 −2.97 −2.17 −1.37 −0.57  0.23
12.93

   14

15.08

16.15

17.22

18.29

19.37

20.44

21.51

22.59

23.66

24.73

25.81

26.88

27.95

29.03

 30.1
P

SN
R

 (
in

 d
B

)

λ (log
10

 scale)

PSNR
MSE−optimal
Predicted−SURE−based
NGCV−based

Fig. 1. Experiment with the analytical Shepp-Logan phantom [10]
using a nonCartesian spiral trajectory. Plot of PSNR(λ) versus λ
indicating λ-values that minimize NGCV(λ), PSURE(λ) and true
MSE(λ).

γ(i)l > 0 ∀ l, and that A(i) is well-conditioned [1, 8]. As useful as
it can be, the inclusion of ε sets a tradeoff [11, Sec. VI-A]: small
ε-values lead to slow convergence while large values result in fast
convergence to a solution different from that of (1).

Recently, we proposed a matrix-splitting approach to circumvent
the use of ε: the basic idea is to add and subtract a matrix C(i) on
both sides of (2) to obtain

B(i)u(i+1,j+1) = F
H
y + [C(i) − F

H
F]u(i+1,j), (4)

where B(i)
�

= C(i) +R�ΓΓΓ−1
(i)R. Thus,

u(i+1,j+1) = B
−1
(i) (F

H
y + [C(i) − F

H
F]u(i+1,j)). (5)

The sequence of iterations indexed by j in (5) is guaranteed to con-
verge to a solution of (2) when C(i) − FHF � 0 [1]. Apply-
ing Sherman-Morrison-Woodbury matrix inversion lemma (MIL) to
B−1

(i) leads to B−1
(i) = C−1

(i) −C−1
(i)R

�G−1
(i)RC−1

(i) and the following
update-rules for (5):

u(i+1,j+1) = b(i+1,j) −C
−1
(i)R

�
v(i+1,j), (6)

solve {G(i)v(i+1,j) = Rb(i+1,j)} for v(i+1,j), (7)

where b(i+1,j)
�

= C−1
(i)F

Hy+[IN−C−1
(i)F

HF]u(i+1,j) and G(i)
�

=

ΓΓΓ(i) + RC−1
(i)R

�. Unlike A(i) that depends on ΓΓΓ−1
(i) (2), G(i) de-

pends on ΓΓΓ(i), so we do not need to use “corner-rounding” in our
scheme. We apply the following iterative solver for (7) that is linear
in both b(·) and v(·):

v(i+1,j,k+1) = D
−1
ΓΓΓ(i)

[Rb(i+1,j) +Hρv(i+1,j,k)], (8)

where Hρ
�

= ρIP − RC−1
(i)R

�, IP is the identity matrix of size

P , and DΓΓΓ(i)

�

= ΓΓΓ(i) + ρIP is a diagonal matrix. In practice, we
perform K iterations of (8) and apply the final update v(i+1,j,K) in
place of v(i+1,j) in (6). Thus, (6) and (8) together form the IRLS-
MIL algorithm that we propose to employ for performing MRI re-
construction based on (1). The update-rule (8) guarantees conver-
gence to a solution of (7) when ρ > max eigval{RC−1

(i)R
�} [1] and

also simplifies the computation of GCV and PSURE as elucidated in
Section 4.
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Fig. 2. Experiment with real Cartesian data. Plot of PSNR(λ) versus
λ indicating λ-values that minimize NGCV(λ), PSUREλ) and true
MSE(λ).

3. CROSS-VALIDATION & RISK ESTIMATION
The quality of reconstruction uλ greatly depends on the regulariza-
tion parameter λ in (1); careful selection of λ is crucial as too small
or too large a λ-value can result in either noisy reconstructions or
loss of details, respectively. In the following, we focus on two quan-
titative techniques for automated adjustment of λ for MRI recon-
struction using the IRLS-MIL algorithm described in Section 2.2.

Cross-validation is a popular method for parameter selection in
inverse problems especially involving linear algorithms [2]. Since
IRLS-MIL is nonlinear, we specifically consider the GCV measure
in [3] that is applicable to nonlinear algorithms. We denote this by
NGCV (i.e., GCV for nonlinear methods):

NGCV(λ)
�

=
M−1‖y − Fuλ(y)‖

2
2

(1−M−1R{tr{FJ(uλ;y)}})
2
, (9)

where tr{·} denotes the trace of a matrix. For MRI reconstruction,
J(uλ;y) ∈ C

N×M denotes the complex-valued Jacobian matrix of
uλ with respect to y that is defined in terms of its elements as [4,12]

[J(uλ;y)]nm
�

=
1

2

(
∂uλ,n(z)

∂zRm

− ι
∂uλ,n(z)

∂zIm

)∣∣∣∣
z=y

, (10)

where zRm and zIm denote the m-th component of the real and
imaginary parts of a vector z ∈ C

M . When uλ is specified in terms
of y and y� (the complex conjugate of y), J(uλ;y) can be evalu-
ated treating y as a variable and y� as a constant [4, 12]. Similarly,
J(uλ;y

�) can be evaluated treating y as constant [4, 12]. We take
the real part, R{·}, in the denominator of (9) to avoid spurious com-
plex entries while computing NGCV(λ) numerically.

As an alternative to NGCV(λ), we also consider the predicted

mean squared-error, PMSE(λ)
�

= M−1‖F(utrue − uλ(y)‖
2
2, for

quantifying image-quality where utrue is the unknown (determinis-
tic) true image. Since PMSE(λ) depends on utrue, it cannot be di-
rectly used and must be estimated in practice. Assuming that noise
in y is zero-mean white complex-Gaussian with variance σ2, Stein’s
principle [5] can be used to obtain1 a predicted Stein’s unbiased risk

1Derivation of (11) requires the hypotheses that the components
{uλ,n(y)}

N
n=1 of uλ(y) do not grow faster than an appropriate exponen-

tial function [7, Theorem 1] and be (weakly) differentiable with respect to
the real and imaginary parts of the components {ym}Mm=1 of y. Evaluation
of NGCV(λ) also requires the differentiability hypothesis.
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estimate [4, 5, 7]: PSURE(λ)
�

=

M−1‖y − Fuλ(y)‖
2
2 − σ2 + 2σ2M−1

R{tr{FJ(uλ;y)}}, (11)

that is unbiased in the sense that Ey{PMSE(λ)} = Ey{PSURE(λ)}
[4, 5, 7], where Ey{·} represents expectation with respect to y.

NGCV(λ), PSURE(λ) (and PMSE(λ)) are computed in the
measurement-domain: for MRI, this corresponds to evaluating
these performance-measures at sample locations in k-space. While
these are not equivalent to the usual image-domain error-measure
MSE(λ)

�

= N−1‖utrue − uλ(y)‖
2
2, it must be noted that it is

impossible to estimate MSE(λ) for ill-posed inverse problems in
general [7, 9]. This is apparent for MRI reconstruction from under-
sampled k-space data, where y contains only partial information
about utrue due to undersampling. We demonstrate through numer-
ical experiments that NGCV(λ) and PSURE(λ) can still provide
near-MSE-optimal λ for MRI reconstruction (1). NGCV(λ) does
not require require σ2 unlike PSURE(λ). However, both NGCV(λ)
and PSURE(λ) necessitate the evaluation of J(uλ;y). We propose
to evaluate J(uλ;y) analytically for the IRLS-MIL scheme (6), (8)
for MRI reconstruction (1).

4. EVALUATION OF THE JACOBIAN MATRIX J(uλ;y)

Due to the iterative nature of IRLS-MIL, we compute J(uλ;y) re-
cursively. We also need J(uλ;y

�) as it plays an equal role in the
derivation of J(uλ;y). In the sequel, we drop the subscript λ in uλ

and use z to represent either y or y� where applicable, for ease of
notation. We begin with (6) and use linearity of (10) to obtain, at the
end of K iterations of (8), that

J(u(i+1,j+1); z) = J(b(i+1,j); z)−C
−1
(i)R

�
J(v(i+1,j,K); z), (12)

where J((·)(i,j); ·) indicates a Jacobian matrix update at a (nested)
iteration indexed by i and j. From the definition of complex-valued
Jacobian matrices (Section 3), we have that

J(b(i+1,j);y) = C
−1
(i)F

H + [IN −C
−1
(i)F

H
F]J(u(i+1,j);y),

J(b(i+1,j);y�) = [IN −C
−1
(i)F

H
F]J(u(i+1,j);y�). (13)

Using product rule for Jacobian matrices [4, 12] and the fact that (8)
involves only a diagonal matrix D−1

ΓΓΓ(i)
, we get from (8) that

J(v(i+1,j,k+1); z) = D
−1
ΓΓΓ(i)

[RJ(b(i+1,j); z) +HρJ(v
(i+1,j,k); z)]

−DvD
−2
ΓΓΓ(i)

J(γγγ(i); z), (14)

whereDv
�

= diag{Rb(i+1,j)+Hρv(i+1,j,k)}. Sinceγγγ(i) is a func-
tion of y (and y�) via u(i), we apply chain rule [4, 12] for Jacobian
matrices to get that

J(γγγ(i); z) = J(γγγ(i);u(i))J(u
(i); z) + (J(γγγ(i);u(i)) J(u

(i); z�))�.

Thus, evaluation of J(u(·);y) requires J(u(·);y�) as mentioned
earlier. It only remains to evaluate J(γγγ(i);u(i)): for the considered
�1-regularization, we have from (3) that γγγ(i) = {λ

−1|[Ru(i)]l|}l =

{λ−1
√

[Ru(i)]l[Ru�
(i)]l}l, which (treating u�

(i) as a constant) leads

to [4, 12]

J(γγγ(i);u(i)) = diag{(2λ2γγγ(i))
−1}diag{Ru

�
(i)}R. (15)

For typical reconstruction sizes, the Jacobian matrices will be enor-
mous and cannot be stored and manipulated directly. So we use a

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Experiment with real Cartesian data. (a) Magnitude of ref-
erence (i.e., utrue); (b) Retrospective random sampling (60% under-
sampling); Magnitude of (c) zero-filled iFFT reconstruction (15.82
dB) and �1-regularized reconstructions with λ selected to mini-
mize (d) true MSE(λ) (28.31 dB); (e) PSURE(λ) (28.08 dB); (f)
NGCV(λ) (27.52 dB).

Monte-Carlo procedure [6] to estimate the traces in (9) and (11):
specifically, we store and update N × 1 matrix-vector products of
the form J(u(·); ·)n and J(v(·); ·)n where n ∈ R

M is an i.i.d. zero-
mean random vector with unit variance. Then, we estimate the traces
in (9) and (11) at every iteration as

tr{FJ(u(i,j);y)} ≈ t̂
�

= n
�
FJ(u(i,j);y)n. (16)

It can be shown that t̂ is unbiased [4], i.e.,

En{t̂} = En{tr{FJ(u
(i,j);y)}},

and its variance can be minimized by using a binary random vector
n = n±1 whose entries are either +1 or −1 with probability 0.5 [4]
compared to using a Gaussian n [6]. To summarize our scheme,
we run the sequence of iterations (6), (8) to obtain the reconstruction
u(·) and simultaneously use (12)-(16) with n±1 to numerically com-
pute NGCV(λ) and PSURE(λ) at every iteration. Since NGCV(λ)

and PSURE(λ) both require tr{FJ(u(i,j);y)}, their computational
complexity is very similar.

5. EXPERIMENTAL SETUP & RESULTS
We implemented products with F using NUFFT [13] for nonCarte-
sian data and FFT for Cartesian data. We chose C(i) ∀ i to be a
circulant matrix and implemented C−1

(i) using FFTs in IRLS-MIL.
For nonCartesian data, we used C(i) = CFrob + νIN ∀ i, where
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CFrob is a circulant matrix that is “closest” to FHF in Frobenius
norm [14] and ν was selected such that νI � FHF − CFrob. For
Cartesian data, we simply set C(i) = FHF + νIN ∀ i for some
ν > 0, since FHF is already circulant in this case. We used finite
differences for R in (1) and performed 10 j-, 10 k- and 7 i-iterations
of IRLS-MIL (6), (8) using FHy as the initialization. In all experi-
ments, the overall compute time for obtaining the reconstruction and
simultaneously evaluating NGCV(λ) and PSURE(λ) for a given λ
under these settings was 50 seconds on a 8-core PC with 2.80-GHz
Intel Xeon processors. For the purpose of illustration, we evaluated
NGCV(λ) and PSURE(λ) for a wide range of λ (see Figs. 1 and 2),
while in practice, golden-section search can be used to optimize λ
with relatively fewer evaluations of NGCV(λ) and PSURE(λ).

In the first experiment, we used a spiral trajectory (with 64
leaves and 512 samples per leaf corresponding to 50% undersam-
pling) and simulated realistic nonCartesian MR data of 40 dB SNR
using the analytical Shepp-Logan phantom of Guerquin-Kern et
al. [10]. We reconstructed 256 × 256 images of the Shepp-Logan
phantom by running the IRLS-MIL algorithm for varying λ. We
assumed σ2 was available for computing PSURE(λ). Fig. 1 plots

PSNR(λ)
�

= 10 log10(max{utrue}
2/MSE(λ)) as a function λ

and indicates λ-values that minimize NGCV(λ), PSURE(λ) and
the true MSE(λ). We see that both NGCV- and PSURE-based λ-
selections lead to reconstructions with PSNRs almost close to that
of the minimum-MSE reconstruction.

Next, we acquired 10 independent sets of fully-sampled 2-D
Cartesian data (256× 256) of a GE-phantom using a 3T GE scanner
(GRE sequence with flip angle = 35◦, TR = 200 ms, TE = 7 ms,
FOV = 15 cm). These fully-sampled Cartesian datasets were used
to reconstruct (using iFFT) 2-D images that were then averaged to
obtain a reference image that served as the “unknown” utrue (Fig.
3a) for computing MSE(λ) and PSNR(λ). We estimated σ2 for use
in PSURE(λ) from separately acquired dummy-data (with the same
scan setting) when no RF field was applied. We retrospectively un-
dersampled data from one of the 10 sets (Fig. 3b) and ran the IRLS-
MIL algorithm minimizing NGCV(λ) and PSURE(λ) individually.
We plot PSNR(λ) versus λ in Fig. 2 for this experiment. Again,
PSURE-based selection is close to the minimum of MSE and the cor-
responding PSURE-based reconstruction (Fig. 3e) is visually simi-
lar to the MSE-optimal one (Fig. 3d). Although NGCV-selection is
sub-optimal, it leads to only a marginal decrease in PSNR and yields
a fairly accurate result (Fig. 3f) that is visually comparable to the
PSURE-based reconstruction (Fig. 3e).

6. SUMMARY, CONCLUSION & DISCUSSION
In this paper, we presented a method for computing the general-
ized cross-validation measure (NGCV) [3] and a predicted risk esti-
mate (PSURE) [4] for nonlinear MRI reconstruction using an itera-
tive reweighted least-squares-type (IRLS-MIL [1]) algorithm. Both
NGCV and PSURE require the evaluation of a complex-valued Jaco-
bian matrix [3, 7] that we carried out analytically for the IRLS-MIL
algorithm. We presented numerical results using simulated (nonCar-
tesian) and real (Cartesian) MR data and illustrated that both NGCV
and PSURE are able to provide near-optimal selections of the regu-
larization parameter for regularized nonlinear MRI reconstruction.

Our methods can be directly applied to 3-D Cartesian and non-
Cartesian MRI reconstruction (albeit with increased computation).
The principles underlying our work can also be extended to other
algorithms, e.g., the split-Bregman algorithm [4].

Evaluating NGCV(λ) and PSURE(λ) requires additional mem-
ory and computation of the same order as the IRLS-MIL algorithm
used for reconstruction. Although these performance measures can

be optimized using golden-section search, multiple evaluations of
NGCV(λ) and PSURE(λ) may be necessary. Alternatively, MRI
reconstruction can be formulated as a constrained minimization of a
suitable (nonquadratic) regularization subject to a data-consistency
constraint: this avoids the need for searching an appropriate λ, how-
ever such constrained problems are harder to tackle. We are cur-
rently investigating a comparison of the methods proposed in this
paper with the constrained formulation both in terms of reconstruc-
tion quality and computation time.
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