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ABSTRACT

Image restoration is a well studied problem and there are several
proposed methods for deblurring and denoising. Recently, there is
increasing interest in iterative schemes that employ non-quadratic
regularizers, especially edge-preserving like Total Variation (TV)
and sparsity promoting like l1 regularization. Most methods make
simplifying assumptions concerning the system model and the most
common one is the use of a circulant blurring model because it fa-
cilitates using the FFT. In this work we focus on a more realistic
non-circulant blurring model and apply existing algorithms for im-
age restoration with non-quadratic regularization, tailored to work
with our non-circulant model.

Index Terms— Image restoration, Non-Circulant System,
Edge-preserving Regularization

1. INTRODUCTION

In image restoration problems the goal is usually to reduce the effects
of blurring and/or suppress noise. A naive deblurring method that
simply inverts the blurring kernel can lead to severe noise amplifica-
tion that degrades image quality. To achieve both goals (namely de-
noising and deblurring) several regularized image restoration meth-
ods have been proposed that take advantage of non-quadratic regu-
larizers (like l1 norm of wavelet coefficients [1,2] or Total-Variation
[3–5]) that suppress noise while preserving edges in the image. Most
of these methods assume a circulant blur (periodic convolution with
a blurring kernel), which even though accurate within the image, can
lead to wraparound artifacts in the boundaries of the image due to
the implied periodicity of the circulant model. Using a non-circulant
model could prevent these artifacts at the cost of increased computa-
tional complexity.

In this work we propose to use a circulant blur model com-
bined with a masking operator that prevents wraparound artifacts.
Our proposed model is equivalent to the model used in [6], but in
this work we focus on edge-preserving regularizers instead of the
quadratic regularizer used in [6]. In addition our approach leads to a
more elegant formulation that requires no pre-processing of the data
or explicit treatment of the unknown, extrapolated boundaries [6].
The resulting model is non-circulant, but existing methods, like non-
linear conjugate gradient (NCG), iterative shrinkage/thresholding
(ISTA) [1, 7, 8], (M)FISTA [8], and Bregman splitting/Augmented
Lagrangian (AL) [9–12], can be tailored for use in this case. All
these methods can be applied to a general class of regularizers
including edge-preserving (e.g., total-variation) and sparsity pro-
moting (e.g., l1 norm) regularizers that are commonly used in image
restoration problems. Simulation results show that using the pro-
posed non-circulant model leads to improved image quality at the
boundaries where the commonly used circulant model is inaccurate.

2. PROBLEM FORMULATION

To design a restoration algorithm one must make some modeling
assumptions. Often deblurring algorithms are developed assuming
a circulant blur model represented by A and the blurred and noisy
image is modeled by:

y =Ax+ n, (1)

where y is the (N × 1) vectorized blurred and noisy image, n is a
(N×1) zero-mean Gaussian noise vector, x is the vectorized (N×1)
image to be reconstructed, and A is a (N×N ) circulant blurring ma-
trix. Even though this model is very popular in the image restoration
literature [1, 2, 5, 10, 13–16], it is inaccurate since the assumption of
circulant blur rarely, if ever, applies in practice.

Reconstructing images under the assumption of a purely circu-
lant model can lead to severe artifacts due to the discontinuities at
the boundaries caused by the periodic extension of the image [6].
Simple approaches like zero-padding or boundary extension do not
resolve this issue since they do not eliminate the discontinuity at the
boundaries. As suggested in [6] data pre-processing techniques like
boundary extension combined with edge-tapering can reduce, but
not completely eliminate the reconstruction artifacts. This will be
illustrated in the experiments section (§4).

For some practical applications it may be reasonable to assume
the blur is shift-invariant inside the region of interest, but it is not
pragmatic to consider that acquired data originated from a blurring
system with periodic end conditions. In reality, there is not enough
information about the blur at the boundaries of the image, so for
reconstruction purposes, it is more practical to use a non-circulant
model.

In this work, similarly to [6], we consider a more realistic non-
circulant model, avoiding the assumption of periodic end conditions,
by introducing a masking operator that eliminates the wraparound
artifacts at the boundaries caused by periodic convolution. We con-
sider the following model:

y =TAx+ n, (2)

where y is the vectorized blurred and noisy (M × 1) image, n is a
(M×1) zero-mean Gaussian noise vector, x is the vectorized (N×1)
image to be reconstructed with N > M , A is a (N × N ) circulant
blurring operator, and T is the (M ×N ) masking operator that trun-
cates the circular wraparound at the boundaries. Even though the
model in (2) is shift-invariant within the image, the use of the mask-
ing operator makes the overall system model TA shift-variant.

Regularized image restoration can be approached in two main
ways. One is the analysis formulation [17], where the objective is to
obtain an estimate of the true image x̂, and the other is the synthesis
formulation [1], where the objective is to estimate a set of transform
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coefficients ŵ and obtain the reconstructed image through a trans-
form as x̂ = W′ŵ.

2.1. Analysis Formulation

Our goal is to estimate the image x by minimizing the following cost
function that we call problem P0:

x̂ =argmin
x

{
Ψ(x) � 1

2
‖y −TAx‖22 + λΦ(Rx)

}
, (3)

where Φ is a regularizer function, R is a sparsifying transform (e.g.,
wavelet or finite differences) and λ is the regularization parameter.

The cost function Ψ in (3) can accommodate a general class of
regularizers, but for the purpose of this work we will focus on edge-
preserving and sparsity promoting regularizers like Total Variation
(TV) and l1 regularization, respectively.

1. l1 regularization or discrete anisotropic total-variation:

Φ(Rx) = ‖Rx‖1 , (4)

where R = W is a wavelet frame or R = C � [C′
1 C′

2]
′ is

a matrix of horizontal and vertical finite differences.

2. Discrete isotropic total-variation

Φ(Cx) =
N∑

n=1

√∣∣[C1x]n
∣∣2 + ∣∣[C2x]n

∣∣2. (5)

The minimization of (3) is a non-trivial optimization problem.
There are several proposed methods that could be used for this task,
like NCG, ISTA, MFISTA and Bregman Splitting/AL that will be
discussed in §3.

2.2. Synthesis Formulation

For the synthesis formulation we used a wavelet frame as the spar-
sifying transform W, and l1 norm of the wavelet coefficients as the
sparsity promoting regularizer. The cost function is minimized over
the wavelet coefficients w and the restored image is then given by
x̂ = W′ŵ. In this case, the original problem P0 is expressed as:

ŵ =argmin
w

{
Ψ(w) � 1

2

∥∥y −TAW′w
∥∥2

2
+ λ ‖w‖1

}
, (6)

where λ is the regularization parameter. Similar methods as those
used for the analysis formulation can also be used to solve this prob-
lem.

3. METHODS

To solve the optimization problem P0 we could use any of the avail-
able methods tailored to our proposed non-circulant model. NCG
requires the use of a rounding parameter to approximate the non-
differentiable absolute value function and thus, will not converge to
an exact solution of P0. Also, even with an efficient line search
method [18], it may still converge slowly and be computationally
expensive. On the other hand AL methods like SALSA [10] could
converge to an exact solution of P0, but for the non-circulant model
the inner updates are not exact and it would require the use of CG for
solving the inner sub-problems that may lead to increased computa-
tion time. In this work, since convergence speed is not our focus, we
chose to use MFISTA for several reasons. First it converges faster
than the simpler ISTA and unlike NCG it converges to a solution of

P0. Also compared to SALSA it is easier to implement and does
not require CG iterations or any parameter tuning to ensure quick
convergence.

For the synthesis formulation all steps of MFISTA are exact,
and the only parameter to consider is a constant L, which is an
upper bound on the Lipschitz constant of ∇f(w), where f(w) �
1
2
‖y −TAW′w‖22. For our image restoration problem, the Lips-

chitz constant is maxeig(WA′T′TAW′) [8] and we can choose
L = maxeig(A′A) = 1, since we scale the blurring operator A
such that maxeig(A′A) = 1, and W′W = I when W is a tight
frame, which gives:

maxeig
(
A′A

)
=maxeig

(
AW′WA′) = maxeig

(
WA′AW′)

≥maxeig
(
WA′T′TAW′).

For the analysis formulation the minimization step in MFISTA
in [8, Eq. (3.14)] cannot be performed exactly, but we can use a few
iterations of a Chambolle-type algorithm as in [13, Eq. (6)–(7)] to
find an approximate minimizer. Again, as in the synthesis formula-
tion, we need to consider the parameter L which is an upper bound
on the Lipschitz constant of ∇f(x), where f(x) � ‖y −Ax‖,
and similarly to the synthesis formulation, we can choose L =
maxeig(A′A) = 1. For the inner Chambolle-type iterations we
also need to consider another parameter c ≥ maxeig(RR′) [13,
Eq. (6) and §A.2], where we can choose c = 1 for the wavelet l1
norm regularizer, since maxeig(W′W) ≤ 1 when W is a frame,
and c = 8 for the TV regularizer since maxeig(C′C) = 8.

4. EXPERIMENTS

For all our experiments we used the 256 × 256 cameraman image
as the true, noise-free image, and following the experimental setting
in [14] we scaled it to the range [0, 1] (Figure 1). For the blurring
kernel we used a uniform 9 × 9 blur. For this image and blur size
the valid part of the convolution is the 248× 248 central region and
the data created with Matlab’s conv2 function using the ‘valid’
option are of this size.

To assess the quality of our proposed non-circulant recon-
struction method we compared it to reconstructions from a purely
circulant model (no data pre-processing) and reconstructions where
we used boundary replication combined with edge tapering, as
pre-processing steps, before reconstructing with a purely circulant
model. When using the non-circulant model in (2) or the unrealistic
circulant model in (1) with data pre-processing the reconstructed
images have original 256 × 256 size and then they are truncated to
match the data size. When reconstructing with the unrealistic cir-
culant model in (1) without pre-processing, the reconstructed image
has the same size as the data, so no truncation is necessary.

For the analysis formulation, we used three types of regulariz-
ers, namely isotropic and anisotropic Total Variation, and l1 norm of
the coefficients of the undecimated 2-level Haar wavelet transform,
excluding the approximation level. For the synthesis formulation,
we used the l1 norm of the coefficients of the undecimated 2-level
Haar wavelet transform, including the approximation level.

We performed three sets of experiments with different levels
of BSNR. We chose the regularization parameter λ to achieve low
NRMS error and an aesthetically pleasing output image for a given
BSNR level. The experiments we performed are as follows

1. 30 dB BSNR (σ2 = 5.03× 10−5) with λ = 2−12,

2. 40 dB BSNR (σ2 = 5.03× 10−6) with λ = 2−15,

3. 50 dB BSNR (σ2 = 5.03× 10−7) with λ = 2−17,
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Fig. 1. Cameraman true image (248× 248), scaled to the range[0, 1].

where σ2 is the Gaussian noise variance. We quantified the recon-
struction quality by computing the ISNR between the restored image
x̂ and the true image xtrue. The ISNR was measured in the 248×248
central region that corresponds to the valid part of the convolution,
since this was the actual size of the input data vector y. Any extrap-
olated values are not used in the ISNR calculations and not shown in
any of the figures.

Figure 2 shows the restored images from experiment 2 (40db
BSNR) for the analysis formulation using isotropic TV regulariza-
tion, and for the synthesis formulation using wavelet l1 norm reg-
ularization. As we see in Fig. 2b and 2f the restored images using
the unrealistic circulant model in (1) exhibit severe ringing artifacts
that are not only contained around the edges of the image. When
data pre-processing is used the ringing artifacts are significantly re-
duced, but not completely removed (Fig. 2c and 2g). These artifacts
can be more severe and lead to more degradation when the strength
of the regularizer decreases as seen in the quantitative results in Ta-
ble 1. Finally, we see that the reconstructed images from the pro-
posed non-circulant model are free of any ringing artifacts and the
quality of the reconstructed images closely resembles the true noise-
free image (Fig. 2d and 2h).

Table 1 gives the quantitative results in terms ISNR for all
experiments. In all cases the ISNR of reconstructions based on the
non-circulant model are higher than that of the reconstructions based
on the unrealistic circulant model without data pre-processing. In
the case of reconstruction with the circulant model and data pre-
processing we can see that for lower SNR, where stronger regular-
ization is required, the smoothing of the regularizer can suppress
the ringing artifacts leading to reconstruction ISNR comparable
to the proposed non-circulant model reconstruction. However, in
higher SNR regimes, where less smoothing is required, the artifacts
from the circulant model reconstruction become more prominent
and the non-circulant reconstruction shows significantly improved
reconstruction quality.

5. DISCUSSION

As seen from the results section, reconstructing with an unrealistic
circulant model can lead to severe distortion of the restored images.
The ringing artifacts due to the discontinuity at the boundaries are
not localized and even existing methods for data-preprocessing [6]
cannot fully suppress these artifacts.

In conclusion, the proposed method showed significant improve-
ment of the restored images, compared to the standard method that
uses an unrealistic circulant reconstruction model. This illustrates
the importance of using more realistic reconstruction models and
also shows that the effects of model mismatch, even though com-
monly not accounted for, can be severe in terms of image quality

degradation. In addition the formulation of our model, even though
similar to the one used in [6], leads to a more elegant approach of the
non-circulant reconstruction problem that does not require any data
pre-processing and estimation of the extrapolated image boundaries.

Finally, the existing reconstruction algorithms, even though they
can be tuned for use with the non-circulant model, may convergence
slowly or can be very computationally intensive. For this purpose
we have developed a new algorithm [19] based on the Augmented
Lagrangian framework like the ones presented in [11,12]. Our algo-
rithm benefits from the fast convergence of AL methods, but avoids
the computationally intensive inner minimizations of algorithms like
SALSA [10].
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Fig. 2. Experiment 2: Restoration results for analysis formulation using isotropic TV regularization (first row) and for synthesis formulation using wavelet
l1 norm regularization (second row). (a,e) Blurred and noisy images from non-circulant model. (b,f) Restored images from unrealistic circulant model. (c,g)
Restored images from unrealistic circulant model with data pre-processing. (d,h) Restored images from proposed non-circulant model
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