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Abstract—Statistical image reconstruction methods improve
image quality in X-ray CT, but long compute times are a
drawback. Ordered subsets (OS) algorithms can accelerate con-
vergence in the early iterations (by a factor of about the number
of subsets) provided suitable “subset balance” conditions hold.
OS algorithms are most effective when a properly scaled gradient
of each subset data-fit term can approximate the gradient of the
full data-fidelity term. Unfortunately, this property can fail in
the slices outside a region-of-interest (ROI) of 3D CT geometries
where sampling becomes limited, particularly for large numbers
of subsets, leading to undesirable results. This paper describes a
new approach to scaling the subset gradient for a regularized OS
algorithm so that it better approximates the full gradient outside
the ROI. We demonstrate that the new scaling factors improve
stability and image quality in helical CT geometry, even for a
very large number of subsets.

I. INTRODUCTION

Statistical image reconstruction methods can improve res-

olution and reduce noise and artifacts by minimizing a cost

function that models the physics and statistics in X-ray CT

[1]. The primary drawback of these methods is their computa-

tionally expensive iterative algorithms. Ordered subsets (OS)

algorithms group the projection data into (ordered) subsets and

update the image each sub-iteration using one forward and

back projection of just one subset [2], [3]. OS methods can

accelerate convergence (by a factor of about L, the number

of subsets) in the early iterations, so it is desirable to use

many subsets1. OS methods are most effective when suitable

“subset balance” conditions hold. Unfortunately, the “long

object problem” in CT hampers subset balance, particularly for

large L. This paper describes a new approach that improves

OS methods for helical CT with large L (many subsets).

In CT, the user defines a target region-of-interest (ROI)

for reconstruction. Iterative reconstruction algorithms must

estimate more voxels than the ROI to model the measured data

completely. In particular, in helical CT, extra slices are needed

at each end of the volume (expanding the z dimension) due

to the “long-object problem” [5]. Estimating correctly these

slices outside the ROI is important as they may impact the

estimation of voxels inside the ROI. In helical CT, these extra

slices are only sparsely sampled by the projection views (see
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1Regularized OS algorithms with large L will have increased compute time

per iteration due to repeated computation of the regularizer gradient, but this
problem has been reduced in [4].

Fig. 1(a)). This sparse sampling can lead to very imbalanced

subsets, particularly for large L, which can destabilize standard

OS methods, degrading image quality.

The idea underlying regularized OS algorithms for CT is

to use the gradient of a subset of the data fidelity term to

approximate the gradient of the full data-fit term. Standard

regularized OS algorithms simply scale the subset gradient by

the constant L [3]. This works fine in 2D, but does not account

for the sampling geometry outside ROI in helical CT, leading

to degraded images particularly for large L. Section II-C

proposes new scaling factors that stabilize the regularized

OS algorithm for helical CT. The idea may be translated

to other geometries with non-uniform geometric sampling.

Like standard OS algorithms, the proposed approach is not

guaranteed to converge (except for the one subset version).

OS algorithms can be modified so that they converge by

introducing relaxation [6], reducing L, or by incremental

optimization transfer [7]. The new scaling factors could be

combined with such methods. Unfortunately, such methods

converge slower than standard OS algorithms. Section III

investigates practical methods for improving image quality of

regularized OS algorithms without slowing initial convergence.

Results with real helical CT data illustrate that the proposed

approach provides improved image quality and better conver-

gence behavior than the ordinary OS algorithm in [3].

II. THEORY

We reconstruct an image x = (x1, . . . , xN ) ∈ RN from

noisy measurement data y ∈ RM by minimizing a penalized

weighted least-squares cost function [1]:

Ψ(x) = Q(x) + βR(x) =
1

2
||y −Ax||2W + βR(x)

=

M
∑

i=1

qi([Ax]i) + β

K
∑

k=1

ψk([Cx]k), (1)

where A = {aij} is a projection matrix, C = {ckj} is a

finite differencing matrix, the diagonal matrix W = diag{wi}
provides statistical weighting, and qi(t) = 1

2
wi(t − yi)

2,

each ψk(t) is a potential function, and β is a regularization

parameter.

A. Separable quadratic surrogate (SQS) algorithm

In this paper, we consider OS algorithms for minimizing the

cost function (1) that are based on separable quadratic surro-

gate (SQS) methods [3] that update all voxels simultaneously:

x
(n+1)

j = x
(n)

j −
1

dj

(

[A′W (Ax(n) − y)]j + β
∂

∂xj
R(x(n))

)

,

(2)
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where we use a precomputed denominator dj [3]. The de-

nominator dj = d
Q
j + βdRj consists of d

Q
j = [A′WA1]j for

the data-fit term and dRj = [|C|′Λ|C|1]j for the regularizer

using maximum penalty curvature in [3], where |C| = {|ckj |}

and Λ = diag
{

maxt ψ̈k(t)
}

. This paper focuses on OS-SQS

algorithms, but the proposed ideas are applicable to other OS

algorithms.

B. Ordered subsets (OS) algorithm

An OS algorithm for accelerating the SQS update (2) has

the following lth sub-iteration at the nth iteration:

x
(n+ l+1

L
)

j = x
(n+ l

L
)

j −

1

dj

(

γ̂
(n+ l

L
)

j [A′
lWl(Alx

(n+ l
L
) − yl)]j + β

∂

∂xj
R(x(n+

l
L
))

)

,

(3)

where l is the subset index. We count one iteration when all

subsets are used once.

The update (3) would accelerate the SQS algorithm by

exactly L if the scaling factor γ̂
(n+ l

L
)

j satisfied the condition:

γ̂
(n+ l

L
)

j =
[A′W (Ax(n+

l
L
) − y)]j

[A′
lWl(Alx

(n+ l
L
) − yl)]j

. (4)

This factor would be expensive to compute, so the conven-

tional OS approach is to simply use the constant γ = L.

This “approximation” often works well in the early iterations

when the subsets are suitably “balanced,” but in general the

errors caused by the differences between γ̂
(n+ l

L
)

j and γ cause

OS methods to approach a limit-cycle that loops around the

optimum of the objective function (1) [6], [7]. The next section

describes a new approximation to the scaling factor γ̂
(n+ l

L
)

j

in (4) that stabilizes OS for helical CT.

C. OS algorithm with proposed scaling factors

The constant scaling factor γ = L used in the ordinary

regularized OS algorithm is reasonable when all the voxels are

sampled uniformly by the projection views in all the subsets.

But in geometries like helical CT, the voxels are non-uniformly

sampled. In particular, voxels outside the ROI are sampled

by fewer projection views than voxels within the ROI (see

Fig. 1(a)). We propose to use a voxel-based scaling factor

γj that considers the sampling rather than a constant factor

γ. After investigating several candidates, we focused on the

following scaling factor:

γj =

L
∑

l=1

I{[A′
l
WlAl1]j>0}, (5)

where I{B} = 1 if B is true or 0 otherwise. As expected,

γj < L for voxels outside the ROI and γj = L for voxels

within the ROI.

Fig. 1(b) shows that the OS algorithm using the proposed

scaling factors (5) provides better image quality than the

ordinary OS approach which does not converge outside the

ROI. The instability seen with the ordinary OS approach may

also degrade image quality within the ROI as seen by the noise

standard deviations in Fig. 1(b). Fig. 2 further shows that the

ordinary OS algorithm within ROI is unstabilized due to the

instability outside ROI, whereas the proposed OS algorithm

being robust.

We precompute (5) and the data-fit denominator d
Q
j ,

[A′WA1]j =
∑L

l=1
[A′

lWlAl1]j simultaneously to minimize

the overhead of computing (5). We store (5) as a short integer

for each voxel outside the ROI only, so it does not require

significant memory.

III. FURTHER REFINEMENTS OF OS ALGORITHM

Although the new scaling factors (5) stabilize OS and

improve image quality, the final image quality still is worse

than a convergent algorithm (see Fig. 1(b)) because any OS

method with constant scaling factors will not converge. This

section discusses some practical methods that can improve

image quality while maintaining reasonably fast convergence

rates. These approaches help the OS algorithm come closer to
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Fig. 1. Helical geometry and reconstructed images in the geometry: (a) Diagram of helical geometry. A (red) dashed region indicates the detector which
acquires measurement data contributed by both voxels in ROI and voxels outside ROI. (b) Effect of gradient scaling in regularized OS-SQS algorithm with GE
performance phantom (GEPP) in helical geometry: Each image is reconstructed after running 30 iterations of OS algorithm with 328 subsets, using ordinary
and proposed scaling approaches. Standard deviation σ of a uniform region (in white box) is computed for comparison. (Several iterations of a convergent
algorithm as a reference)
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Fig. 2. Mean and standard deviation within an uniform region of end slice
of ROI (See Fig. 1(b)) vs. iteration, showing the instability of ordinary OS
approach compared with the proposed OS approach.

the converged image, reducing the undesirable noise in images

reconstructed using OS algorithms with large L.

We investigated these methods using helical CT scans of the

GE performance phantom (GEPP), shown in Fig. 4. We used

mean and standard deviation of an uniform region to measure

noise, full width at half maximum (FWHM) of a tungsten

wire to measure resolution, and a root mean square difference

(RMSD) between the OS image and a converged reference

image.

A. Transition to small number of subsets

OS algorithm with large L is preferred for faster con-

vergence, but it approaches a limit cycle leading to noisier

images than to a converged solution. Using fewer subsets

leads to images closer to the solution but slower convergence.

A practical solution is to have fast initial convergence with

many subsets and subsequently switch to fewer subsets to

achieve a desirable final image. SQS converges slower for high

spatial frequencies [8], and Table. I shows that an impulsive

wire converges slowly for fewer subsets. Thus, the transition

point must be chosen carefully to achieve fast convergence and

desirable image quality. We found that 20 iterations with 328

subsets followed by 10 iterations with 82 subsets provided a

reasonable balance between resolution and noise.

Because (5) depends on L, the transitioning approach re-

quires computing another set of γj factors for the smaller

number of subsets. For the choice of switching from 328 to 82

subsets, we can precompute both γj,328 and γj,82 efficiently

along with the precomputed data-fit denominator using the

following equations:

γj,328 =

82
∑

p=1

4p
∑

l=4p−3

I{[A′
l
WlAl1]j>0}

γj,82 =

82
∑

p=1

I
{
∑4p

l=4p−3 I{[A′
l
WlAl1]j>0}>0}

. (6)

Because 328 is divisible by 82, each group of 4 consecutive

subsets out of 328 subsets matches one of the 82 subsets.

B. Averaging sub-iterations at termination

To ensure convergence, [7] proposed to average previous

sub-iterations, but the greatly increased memory space re-

quired has prevented its application in 3D X-ray CT. As a

practical alternative, we investigated an approach where the

final image is formed by averaging all of the sub-iterations of

the final iteration of the OS algorithm (after it approaches its

Smoothed Number of subsets Suggested approaches
Conv.

FBP 82 246 328 Trans. Aver. Tr.&Av.

Mean [HU] 1126.2 1126.2 1125.4 1125.2 1126.2 1126.3 1126.4 1126.4
Std. Dev. [HU] 2.22 6.91 7.58 8.02 7.01 7.38 6.97 6.81
FWHM [mm] 1.36 0.72 0.61 0.60 0.61 0.60 0.61 0.59
RMSD [HU] 18.48 2.20 2.99 4.03 1.58 2.31 1.36 ·

TABLE I
NOISE, RESOLUTION AND RMSD BEHAVIOR OF OS ALGORITHM FOR EACH APPROACHES AFTER 30 ITERATIONS, COMPARED WITH SMOOTHED FBP

AND CONVERGED IMAGE.
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Fig. 3. Noise (mean and std. dev.), resolution (FWHM) and RMSD of OS-SQS with three suggested approaches vs. iteration. Three methods improved
image quality of OS algorithm without slowing down the fast convergence rate.
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Fig. 4. Smoothed FBP, converged image and OS-SQS reconstructed images after 30 iterations. We used the uniform region within the white box to measure
the noise level and σ indicates the standard deviation of the uniform region. We computed the FWHM of a wire (red arrow) to measure the resolution.

limit cycle). We ran 30 iterations of 328 subsets and averaged

the 328 sub-iterations of the final iteration. A memory-efficient

implementation of this approach uses a recursive in-place

calculation:

x̄(
l+1
L ) =

l

l + 1
x̄(

l
L ) +

1

l + 1
x(

l+1
L ), (7)

where x̄(1) is the final averaged image.

We also investigated the combination of transitioning and

averaging approaches. We averaged the 82 sub-iterations of

the final iteration, after running 20 iteration of 328 subsets

and 10 iterations of 82 subsets.

C. Results

We examined the effects of the three suggested methods

applied to OS algorithms with 328 subsets. Fig. 4 shows the

smoothed filtered back-projection (FBP) image and converged

reference image, where we use the smoothed FBP image as

the initial condition for the iterative algorithms. Table. I, Fig. 3

and Fig. 4 show that all methods help improve overall image

quality, whereas the resolution slightly degraded compared

with solely using 328 subsets. Both transitioning and averaging

greatly helped reducing the noise in the images.

Transitioning to small number of subsets decreased the noise

level but using fewer subsets impacted somewhat the conver-

gence of high-frequency structures in the image. In contrast,

averaging sub-iterations over the last iteration maintained the

resolution level but the noise did not decrease as much as the

transitioning approach. A combination of both the approaches

compensates for the drawbacks of each and is a feasible

solution.

IV. DISCUSSION

We proposed a new scaling approach (5) for a regularized

OS algorithm that provides an efficient solution for non-

uniformity in the sampling geometry such as in helical CT.

This approach reverts to the standard regularized OS algorithm

in the middle of the ROI where the voxels are all well

sampled, but stabilizes the images in the slices outside of

the ROI where the standard constant scaling factor leads

to over-correction, particularly when using many subsets.

In addition, we investigated some practical approaches for

improving the image quality after OS approaches a limit cycle,

namely, transitioning to fewer subsets and averaging the sub-

iterations of the final iteration. Preliminary results suggest

that these methods can improve the overall image quality of

OS algorithms when using numerous subsets without unduly

affecting the convergence rate. Future work includes seeking

a theoretical justification for the proposed scaling factors (5).
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