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ABSTRACT

Conventional ordered-subsets (OS) methods for regularized image reconstruction involve computing the gradient of the
regularizer for every subset update. When dealing with large problems with many subsets, such as in 3D X-ray CT, com-
puting the gradient for each subset update can be very computationally expensive. To mitigate this issue, some investigators
use unregularized iterations followed by a denoising operation after updating all subsets.1 Although such methods save
computation, their convergence properties are uncertain, and since they may not be minimizing any particular cost function
it becomes more difficult to design regularization parameters. Furthermore, it is known that inserting filtering steps into un-
regularized algorithms can lead to undesirable spatial resolution properties.2 Our goal here is to reduce the computational
cost without inducing such problems. We propose a new OS-type algorithm that is derived using optimization transfer
principles. The proposed method allows the gradient of the regularizer to be updated less frequently, and thus reduces the
computational expense when many subsets are used. Our derivation leads to a correction term that accounts for the fact
that the regularizer gradient is updated less frequent than every sub-iteration. Simulations and a phantom experiment show
that the proposed method reconstructed images with compatible image quality within reduced computation time.
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1. INTRODUCTION

Model-based image reconstruction (MBIR) methods, also known as statistical image reconstruction methods, can incor-
porate accurate system models and take the stochastic characteristics of noise into account, and thus have the potential
to improve CT image quality and reduce patient dose compared to conventional methods such as filtered back-projection
(FBP). However, iterative algorithms for penalized-likelihood (PL) image reconstruction require considerable computa-
tions, and the computational expense is one of the great challenges for practical utilization of MBIR methods.
Ordered-subsets (OS) algorithms, also known as block-iterative or incremental gradient methods, are popular in the field of
statistical image reconstruction due to their significant acceleration in initial iterations. The basic idea of OS methods is to
group the measurement data into an ordered sequence of subsets or blocks and utilize only one subset of the data for each
update instead of using the entire measurements. Unregularized OS reconstruction methods are used routinely for PET and
SPECT scans.3 For regularized image reconstruction problems, conventional OS algorithms calculate the gradient of the
regularizer for every subset update.4 For large problems with large number of subsets, such as cone-beam or helical CT
image reconstruction, calculating the gradient for each subset update can be very computationally expensive.
In this paper, we propose a new OS algorithm that is derived from optimization transfer principles and that allows us to
compute the gradient of the regularizer less frequently. The proposed method reduces computational cost with little im-
pact on the convergence rate leading to an overall acceleration. We apply the proposed algorithm to penalized weighted
least squares (PWLS) image reconstruction for cone-beam X-ray computed tomography (CT). The method easily could be
adapted for other statistical models.
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2. METHODS

2.1 Ordered-Subsets (OS) algorithms

For most penalized-likelihood image reconstruction problems, the objective function and its gradient can be rewritten as
the following partially separable forms:5

Ψ(x) =

M∑

m=1

Ψm(x), ∇x Ψ(x) =

M∑

m=1

∇x Ψm(x),

where typically Ψm(x) corresponds to a subset of the projection data. Most iterative algorithms use the gradient of the
objective function to obtain a minimizer, and many can be written as the form

x(n+1) = x(n) − αnD0(x
(n))∇x Ψ(x(n)), (1)

where αn > 0 is a relaxation parameter and D0 is a scaling matrix, which is typically diagonal. For many algorithms, the
empirical findings have suggested that in early iterations, one can replace the gradient of the entire objective function with
that of only a part of the objective function and still have x(n+1) be better than x(n) but with less computational cost. Such
methods are called incremental gradient methods in the optimization literature.6, 7 The term ordered-subsets has been used
in tomography fields, because only a subset of projection views are used in the update steps and the ordering of the views
is important.3, 4, 8 For x(n) far from the minimizer, x̂, if we select the subsets to be “balanced” in some appropriate sense
then the following conditions hold:

∇x Ψ1(x) ∼= ∇x Ψ2(x) ∼= · · · ∼= ∇x ΨM (x),

or equivalently,
∇x Ψ(x) ≈M∇x Ψm(x), ∀m. (2)

Thus, instead of (1), a typical OS algorithm has the form shown in Table 1.

Table 1. Ordered-subsets Algorithm
Initialize x(0)

for n = 0, 1, · · · ,
x(n) := x(n,0)

for m = 1, · · · ,M

x(n,m) = x(n,m−1) − αnMD(x(n,m−1))∇x Ψm

(
x(n,m−1)

)
,

end
x(n+1) := x(n,M)

end

We refer to each update in Table 1 as the mth subset update, or mth sub-iteration of the nth iteration. One complete
iteration is performed by cycling through all the subsets indexed by m so that all data is utilized. In tomography problems,
the subsets are selected so that projections within each subset correspond to angularly downsampled projections. It was
suggested that the ordering of the subsets that makes projections corresponding to one subset as “orthogonal” as possible
to previously used projections is preferable.9, 10 Despite their success in speeding up the initial convergence, ordinary
OS algorithms are not convergent in general but rather approach a suboptimal limit-cycle without relaxation, i.e., when
αn = α. To address this issue, several families of convergent OS type algorithms have been proposed,11–14 although those
modifications tend to slow down convergence. In this paper, we focus on the initial convergence characteristics of OS
algorithms rather than their final convergence properties.
Consider a PWLS objective function of the form

Ψ(x) = L- (x)+R(x), L- (x) =
1

2
‖y −Ax‖2W , R(x) = β

K∑

k=1

ψk([Cx]k), (3)
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where A is the system matrix, x is the discretized version of the object being imaged, W = diag{wi} is a statistical
weighting matrix, β is the regularization coefficient that controls the resolution-noise tradeoff, ψk is the potential function,
and C is a matrix performs finite differences between neighboring voxels. The data-fit term can be rewritten as the
following separable form:

L- (x) =
M∑

m=1

L- m(x),

where L- m is the data-fit term associated with the mth subset. OS algorithm for PWLS objective function is shown in
Table 2. For separable quadratic surrogates method, we can define the scaling matrix D as follows:

D(x) = [DL(x) +DR(x)]
−1
.

Typical choices4 for DL and DR are DL = diag(A′WA1) and DR(x) = diag
(|C|′ diag(|ω(Cx)|) |C|1) where

ω(t) = ψ̇(t)/t is Huber’s curvature.15 Notice that we need to calculate the regularization gradient, ∇x R
(
x(n,m−1)

)
, for

every sub-iteration, which may cause each update to be very computationally expensive when dealing with large problems
with many subsets.

Table 2. Ordered-subsets Algorithm for PWLS problem
Initialize x(0)

for n = 0, 1, · · · ,
x(n) := x(n,0)

for m = 1, · · · ,M

x(n,m) = x(n,m−1) − αnD(x(n,m−1))
(
M∇x L- m

(
x(n,m−1)

)
+∇x R

(
x(n,m−1)

))
,

end
x(n+1) := x(n,M)

end

2.2 Ordered-subsets with Double Surrogates

Consider a general PL objective function of the form

Ψ(x) = L- (x)+R(x), (4)

where L- (x) is the data-fit term and R(x) is the regularizer. We assume that the data-fit term L- (x) has a quadratic surrogate
of the form:

L- (x) ≤ φL(x; x̃) = L- (x̃)+∇ L- (x̃)(x− x̃) +
1

2
(x− x̃)′DL(x̃)(x− x̃), ∀x̃,

with an appropriate diagonal matrix DL. We also assume the regularizer R (x) has a quadratic surrogate of the form:

R(x) ≤ φR(x; x̄) = R(x̄)+∇R(x̄)(x− x̄) +
1

2
(x− x̄)′DR(x̄)(x− x̄), ∀x̄,

with an appropriate diagonal matrix DR. Then we define the following double-surrogate function:

φ(x; x̃, x̄) � φL(x; x̃)+φR(x; x̄) . (5)

By construction, this quadratic surrogate has the following properties:

Ψ(x) = φ(x;x,x)

Ψ(x) ≤ φ(x; x̃, x̄), ∀x̃, x̄.
These properties generalize those of usual optimization transfer methods.16,17 For subsequent use, note that from (5):

∇x φ(x; x̃, x̄) = ∇ L- (x̃)+DL(x̃)(x− x̃) +∇R(x̄)+DR(x̄)(x− x̄),
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so the minimizer of the double surrogate function is given as follows:

argmin
x

φ(x; x̃, x̄) = [DL(x̃) +DR(x̄)]
−1

(DL(x̃)x̃+DR(x̄)x̄−∇ L- (x̃)−∇R(x̄)) .

A standard optimization transfer algorithm works as follows:

x(n+1) = argmin
x

φ(x;x(n),x(n))

= x(n) − [DL(x
(n)) +DR(x

(n))]
−1

(∇ L- (x(n))+∇R(x(n))) .

One can show this also decreases Ψ monotonically, i.e., Ψ(x(n+1)) ≤ Ψ(x(n)). Furthermore, this algorithm converges
under suitable conditions.16 For the case of separable quadratic surrogates (SQS), usually this type of algorithm converges
undesirably slowly.4 The conventional ordered-subsets (OS) approach to accelerate convergence is to make the following
approximation:

∇ L- (x̃) ≈ Dm∇ L- m(x̃),

where L- m is the data-fit term corresponding to the mth subset of the projection views, and Dm is a suitable diagonal
matrix, which often simply is MI for M subsets as suggested in (2). Using this approximation, we define the following
approximate surrogate function:

φm(x; x̃, x̄) � L- (x̃)+Dm∇ L- m(x̃)(x− x̃) +
1

2
(x− x̃)′DL(x̃)(x− x̃) + φR(x; x̄) .

For a conventional regularized ordered-subsets method, the minimization step for each subset is given as follows:

x(n,m) = argmin
x

φm
(
x;x(n,m−1),x(n,m−1)

)
(6)

= x(n,m−1) − [
DL(x

(n,m−1)) +DR(x
(n,m−1))

]−1 (
Dm∇ L-

(
x(n,m−1)

)
+∇R

(
x(n,m−1)

))
,

x(n,0) := x(n), x(n+1) := x(n,M),

for m = 1, . . . ,M .
This iteration is undesirably slow because it computes the regularization gradient ∇R for every subset. To reduce this
expense, we propose to exploit the generality of the double surrogate (5) by using the following novel update:

x(n,m) = argmin
x

φm
(
x;x(n,m−1),x(n)

)
(7)

= Dφ(x
(n,m−1),x(n))

(
DL(x

(n,m−1))x(n,m−1) +DR(x
(n))x(n) −Dm∇ L-

(
x(n,m−1)

)−∇R(x(n))
)

= x(n,m−1) −Dφ(x
(n,m−1),x(n))

⎛

⎝Dm∇ L-
(
x(n,m−1)

)
+∇R(x(n))+DR(x

(n))(x(n,m−1) − x(n))︸ ︷︷ ︸
new term

⎞

⎠ ,

where Dφ(x
(n,m−1),x(n)) =

[
DL(x

(n,m−1)) +DR(x
(n))

]−1
. This new iteration (7) utilizes the same regularizer gradi-

ent for all subsets. Compared to (6), the updates in (7) are quite similar except for an extra term that compensates for not
updating the regularizer gradient. Table 3 summarizes the proposed algorithm. It requires storing the previous image xlast.

In above description, we updated the regularizer gradient only after all subsets were updated. Obviously, the regularizer
gradient can be updated as frequently as needed and we denote the update frequency as Uf (see algorithm in Table 3).
Updating the regularizer gradient less often will reduce the computational cost at the expense of the convergence rate in
early iterations.
The proposed algorithm was evaluated on a PWLS image reconstruction problem for cone-beam X-ray CT. We have
investigated the trade-off between the update frequency and the computational expense per iteration.
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Table 3. General PL Ordered Subsets Method with Double Surrogate
Initialize x(0)

for n = 0, 1, · · · ,
x(n) := x(n,0), xlast := x(n)

for m = 1, · · · ,M
if mod(m− 1, Uf ) = 0

xlast = x(n,m−1))

end
x(n,m) = argmin

x
φm

(
x;x(n,m−1),xlast

)

end
x(n+1) := x(n,M)

end
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Figure 1. Images of (a) XCAT phantom and (b) FBP reconstruction (c) Converged Image (x∞) from cone-beam CT data with 164
projection views.

3. RESULTS

The proposed algorithm was investigated on a 3D cone-beam CT image reconstruction problem with limited view angles.
The XCAT phantom18 was used as a static object, and the image was reconstructed to a 512 × 512 × 50 grid with pixel
size Δx = Δy = 0.9766 mm and Δz = 0.625 mm.
We simulated a 3rd-generation axial cone-beam CT system using the separable footprint projector.19 The simulated system
has Ns = 888 channels and Nt = 32 detector rows spaced by Δs = 1.0239 mm and Δt = 1.09878 mm per view, and 164
evenly spaced view angles over 360◦, which corresponds to an undersampling factor of 6. The source to detector distance
was 949 mm, and the source to rotation center distance was 541 mm. We also included a quarter detector offset in the
channel direction to reduce aliasing.
For the edge-preserving regularizer, we used a certainty-based penalty20 to obtain more uniform resolution and a q-
Generalized Gaussian MRF (q-GGMRF)21 as the penalty function to provide edge-preserving regularizer. The regular-
ization parameter β was selected such that the target PSF has a full-width at half-maximum (FWHM) of approximately 1.4
mm.20 We generated the noisy sinogram with Poisson noise, and used weighting wi = exp(−[Ax]i).
To assess the convergence speed of the proposed method, we computed the root mean squared difference between the
image estimate at the nth iteration, x(n), with both the fully converged solution, x∞, and true image, xtrue. We calculated
x∞ using consecutive steps of ordered-subsets with decreasing number of subsets. We used 41, 10, and 1 subsets with
100, 100, and 1000 iterations respectively.

This type of “relaxed” OS is guaranteed to converge because the final stage uses just 1 subset for which (6) is convergent.4

Fig. 1 shows the images of true phantom, Filtered Back Projection (FBP) reconstruction,22 and fully converged image
(x∞). For the FBP reconstruction, the ramp filter was associated with a Hanning apodization window of 2048-point in
length to attenuate the high frequency noise. Due to limited view angles, conventional FBP reconstruction, which was used
as the initial condition for our OS reconstruction, shows severe streaking artifacts compared to the true phantom. The fully
converged image has much less artifacts, thus illustrating the benefits of statistical image reconstruction in limited view
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Figure 2. Convergence rates at each iteration for different regularizer update frequency. OS-41-DS-n indicates OS with 41 subsets and
Uf = n, and “n = all” means only updating once after all subset updates are done. (a) x(n) with respect to x∞ and (b) x(n) with respect
to xtrue

angle problems.
We divided the projections into 41 subsets, which corresponds to 4 views per subset. This is a rather aggressive selection
compared to conventional choices to try to accelerate convergence significantly.
The regularizer gradient was updated at different frequencies to see its effect to convergence and computation time. Fig. 2

illustrates that our proposed method gives similar root-mean-square (RMS) differences,
√

1
N

∑N
j=1(x

(n)
j − x∞j ), as the

conventional OS even when we update the regularizer infrequently per iteration.

On the other hand, Fig. 3 illustrates that the computational expense required to obtain the same level of RMS differences
was reduced by the proposed method. With Uf = 13, which gives the best result in this case, the proposed method
converges about 3 times faster than the conventional OS. By observing the reconstructed image at the same time point,
Fig. 4 clearly shows that the proposed method is converging faster. There exists tradeoff between convergence rates and
computational expense, and for our case calculating the regularizer gradient for every 13 subset updates gave the most
efficient results. For different problems, the optimal update frequency will differ. However, it is noticeable that regardless
of the update frequency, the proposed method is converging faster than the conventional OS. As the problem gets larger and
the number of subsets increase, the computational expenses required to calculate the gradient of the regularizer becomes
much more dominant. Therefore, we can expect substantial benefits from our proposed method for such problems.

4. CONCLUSIONS

We presented a simple modification of the conventional OS method that allows the regularizer gradient to be less frequently
updated. The method provides very significant acceleration when applied to large problems with many subsets, such as
cone-beam or helical CT image reconstruction, while still providing good reconstructed images.
Simulations demonstrated that a good reconstruction with compatible quality was achieved within much less computation
time. However, the reduction in the computational expense may depend on the size of the problem and the complexity
of updating the regularizer compared to the complexity of forward and back-projection. When implemented on graphics
processing unit (GPU), the trade-offs may differ.
We only focussed on the initial convergence characteristics of the ordered-subsets method. Since the conventional OS
algorithm is inherently not globally convergent, neither is the proposed method. We can apply the double surrogate idea to
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Figure 3. Convergence rates versus time for different regularizer update frequency. (a) x(n) with respect to x∞ and (b) x(n) with respect
to xtrue

other block iterative algorithms like incremental optimization transfer (IOT), which is globally convergent.23

Further research will address the systematic way to determine the optimal update frequency and extension of the idea to
other algorithms.
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(a) OS-41 (conventional OS)

(b) OS-41-DS-4

(c) OS-41-DS-13
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Figure 4. Comparing the convergence speed of OSDS with different update frequencies. Left column: Images at the same time point
(4000 sec after initialization). Right column: Absolute difference images with respect to x(∞).
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