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ABSTRACT

There are a variety of imaging modalities that record a se-

quence of measurements where the sensor and/or the objects

in the scene are moving and the goal is to reconstruct an image

without motion blur. Examples include multi-frame super-

resolution problems and motion-compensated image recon-

struction problems in medical imaging. Various methods have

been proposed for such applications, often in the context of

specific imaging modalities. However, many such methods

can be formulated in a common framework and thus solved

by the same optimization method. To solve the reconstruc-

tion problem efficiently, the optimization method must be de-

signed carefully.

This paper proposes a novel approach to solve multi-

frame image reconstruction problems more efficiently. We

use a variable-splitting technique to dissociate the original

problem into a few simpler problems that are then solved

individually using an alternating minimization method. The

proposed method is amenable to preconditioning, paralleliza-

tion, and application of block iterative algorithms to the

sub-problems. Simulation results demonstrate that even with

simple diagonal or circulant preconditioners, the proposed

method converges faster than the conjugate gradient (CG)

method.

1. INTRODUCTION

Every imaging device has limitations in its achievable spa-

tial and temporal resolutions due to physical or practical con-

straints. The presence of rapid object or sensor motion during

data acquisition can lead to images that are corrupted by mo-

tion artifacts such as blurring and streaks. For different imag-

ing modalities, various methods have been developed to ad-

dress such problems, such as super-resolution reconstruction

for digital cameras [1] and motion-compensated reconstruc-

tion for medical imaging modalities [2, 3]. Many of these

methods can be formulated similarly so an efficient optimiza-

tion method developed for one multi-frame image reconstruc-

tion problem may also be useful for other problems.
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To solve such problems efficiently, the optimization

method must be selected carefully. The formulation of the

problem and the characteristics of the system model have

critical roles in determining the which optimization meth-

ods are efficient. In cardiac computed tomography (CT)

problems, the system model in motion-compensated image

reconstruction (MCIR) methods includes both the tomo-

graphic forward-projector and warp matrices that describe

the (nonrigid) object motion. These warp matrices make it

computationally very expensive to use iterative algorithms

for MCIR. Compared to conventional CT image reconstruc-

tion problems, designing a proper preconditioner for MCIR

is more difficult due to the complexity of the system model.

The popular ordered-subset (OS) type of algorithms [4] are

inefficient for MCIR due to the computationally expensive

warp matrices.

This paper proposes a novel approach to solving multi-

frame image reconstruction problems more efficiently. We

use a variable-splitting technique to dissociate the original

problem into a few simpler problems that are then solved

individually using alternating mnimization. The proposed

method is illustrated with a simulation of cardiac CT, which

is very important for diagnosing heart disease.

2. MULTI-FRAME IMAGE RECONSTRUCTION

2.1. Measurement Model

Let x(r, t) denote the time-dependent intensity distribution

of the unknown object, where r is the spatial location and t

is time. Let tm be the time of mth frame at which the mea-

surements, ym, corresponding to the motion-free state of the

objects are acquired. We assume that y is theM×1 measure-

ment vector consist of Nf scans, y = [y1, · · · ,yNf
]. The

measurements are assumed to be linearly related to the object

xm = x(·, tm) as follows:

ym = Amxm + ǫm, m = 1, · · · , Nf , (1)

where Am is the system model for mth frame and ǫm is the

noise. The goal is to reconstruct {xm} from {ym} using a

motion model. Here we assume xm = Tmx where Tm is a
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warp matrix based on motion estimates that are determined

separately.

2.2. Problem Formulation

Consider a penalized-likelihood least squares (PWLS) formu-

lation of multi-frame image reconstruction [1, 3]:

x̂ = argmin
x

{Ψ(x) , L- (x)+R(Cx)}, (2)

L- (x) =
1

2
‖y −ATx‖

2
W
, R(Cx) = β

K
∑

k=1

ψk([Cx]k),

A = diag{A1, · · · ,ANf
}, T = [T ′

1 . . .T
′

Nf
]′,

where A is the system matrix, x ∈ R
N is the discretized ver-

sion of the object being reconstructed, W = diag{wi} is a

statistical weighting matrix, β is the regularization parameter,

ψk is the potential function, C is a matrix that performs finite

differences between neighboring voxels, K is the number of

neighbors, and T is the warp matrix. The minimization prob-

lem (2) is challenging due to the warp matrix T in the system

model.

3. PROPOSED METHOD

We apply a variable splitting approach to the problem. The

basic idea of variable splitting method is to introduce auxil-

iary constraint variables so that coupled parts in the cost func-

tion can be separated [5]. The original problem is transformed

into an equivalent constrained optimization problem, and then

alternating minimization methods are applied to efficiently

solve the problem. Previous works have focussed on splitting

the regularization term and also the statistical weighting [6].

In this work, in addition to those splittings, we focus on split-

ting the warp matrix from the forward-projector in the system

matrix.

3.1. Equivalent Constrained Optimization Problem

We introduce auxiliary constraint variables u, v, z, and s, and

write (2) as the following equivalent constrained problem:

argmin
x,u,v,z,s

Ψ(x,u,v, z, s) =
1

2
‖y − v‖

2
W

+ R(z),

s.t. u = Tx, v = Au, z = Cs, s = x, (3)

where u ∈ R
NNf separates the system matrix from the warp

matrix, v ∈ R
M separates the effect of the weighting matrix,

W , on Ax, z ∈ R
NK and s ∈ R

N detach the warp matrix

from the regularizer.

3.2. Method of Multipliers

We use the framework of method of multipliers [7] to solve

(3), and construct an augmented Lagrangian function as fol-

lows:

L(x,u,v, z, s) ,
1

2
‖y − v‖

2
W

+ R(z)

+
µu

2
‖u− Tx− ηu‖

2
+
µv

2
‖v −Au− ηv‖

2

+
µz

2
‖z −Cs− ηz‖

2
+
µs

2
‖s− x− ηs‖

2
,

(4)

where η’s are Lagrange-multiplier-like vectors and µ’s are the

AL penalty parameters (see [6] for details).

Solving (3) using the AL function would require jointly

minimizing (4) with respect to all variables which is computa-

tionally expensive. So we apply alternating minimization [6].

3.3. Alternating Direction Minimization

At the jth iteration, we update each vector in turn as follows:

x(j+1) = argmin
x

µu

2

∥

∥

∥
u(j) − Tx− η(j)

u

∥

∥

∥

2

+
µs

2

∥

∥

∥
s(j) − x− η(j)

s

∥

∥

∥

2

, (5)

u(j+1) = argmin
u

µu

2

∥

∥

∥
u− Tx(j+1) − η(j)

u

∥

∥

∥

2

+
µv

2

∥

∥

∥
v(j) −Au− η(j)

v

∥

∥

∥

2

, (6)

v(j+1) = argmin
v

1

2
‖y − v‖

2
W

+
µv

2

∥

∥

∥
v −Au(j+1) − η(j)

v

∥

∥

∥

2

, (7)

s(j+1) = argmin
s

µz

2

∥

∥

∥
z(j) −Cs− η(j)

z

∥

∥

∥

2

+
µs

2

∥

∥

∥
s− x(j+1) − η(j)

s

∥

∥

∥

2

, (8)

z(j+1) = argmin
z

R(z)

+
µz

2

∥

∥

∥
z −Cs(j+1) − η(j)

z

∥

∥

∥

2

, (9)

η(j+1)
u

= η(j)
u

− (u(j+1) − Tx(j+1)), (10)

η(j+1)
v

= η(j)
v

− (v(j+1) −Au(j+1)), (11)

η(j+1)
s

= η(j)
s

− (s(j+1) − x(j+1)), (12)

η(j+1)
z

= η(j)
z

− (z(j+1) −Cs(j+1)). (13)

The sub-problems (5) to (8) are all quadratic problems for

which analytical solutions exist. However, (5) and (6) can-

not be implemented explicitly due to the enormous sizes of

the matrices involved. We employ the iterative CG-solver for

these sub-problems.

Sub-problem (5) is an image-registration-type problem,

which has the following analytical solution:

x(j+1) = H−1(µuT
′(u(j)−η(j)

u
)+µs(s

(j)−η(j)
s

)), (14)
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Fig. 1. Images in the ROI of (a) XCAT phantom, (b) FBP reconstruction with Hanning filter (also the initial guess x(0)), (c)

Converged Image x(∞).

where H = µuT
′T + µsIN . Since H is much simpler

than the Hessian of the original data term in (2), it is more

amenable to preconditioning. We accelerate the CG-solver

for (14) by using a suitable preconditioner for H .

We now consider (6), which is a tomography problem

with the following solution:

u(j+1) = G−1(µu(Tx(j+1) + η(j)
u

) + µvA
′(v(j) − η(j)

v
)),

where G = µvA
′A+µuINNf

. We preconditioned this term

with a circulant matrix to obtain faster convergence [6, 8].

This sub-problem can be further parallelized into Nf prob-

lems. Each parallelized problem can be efficiently solved by

preconditioned CG or ordered-subsets type algorithms, which

are less efficient for the original problem.

Sub-problems (7) - (9) can be solved much more easily

compared to above two sub-problems. Sub-problem (7) has

a simple analytical solution, and (8) is exactly solvable with

Fourier transform if we use C with periodic end condition.

Finally, (9) can be solved easily with iterative algorithms or

exactly solved for a variety of potential functions. Here, we

consider one of the edge-preserving regularization using the

Fair potential function. For this regularizer, (9) separates into

1D minimization problems and has an exact solution (See [6]

for details). The AL parameters, µ’s, govern the convergence

speed of the proposed splitting method [6]; we selected them

empirically to achieve good convergence speed.

4. RESULTS

The proposed algorithm was investigated on a 2D CT image

reconstruction problem with cardiac motion from simulated

data. We simulated a 3rd-generation fan-beam CT system us-

ing the separable footprint projector [9]. The simulated sys-

tem had 888 channels per view spaced 1.0239 mm apart, and

984 evenly spaced view angles over 360◦. The image was

reconstructed to a 512 × 512 grid of 0.9766 mm pixels. We

generated seven frames of the XCAT phantom for a heart rate

of 75 bpm. The motion between the frames was estimated di-

rectly from XCAT images using nonrigid image registration.
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Fig. 2. Plot of RMSD versus iteration for various settings

of the proposed method compared to the conventional CG

method. For the proposed method, (N10,P5) indicates 10 iter-

ations for sub-problem (5) without preconditioner for H and

5 iterations for sub-problem (6) with a preconditioner for G.

OS60 indicates that ordered-subsets method was used instead

of CG to solve sub-problem (6).

Estimating motion parameters from true images is unrealis-

tic, but our focus is not on obtaining reasonable motion es-

timates. We only focus on the image reconstruction part of

MCIR. For the regularizer, we used a Fair potential function

to provide edge-preservation and a certainty-based penalty to

obtain more uniform resolution. The sinogram was generated

with Poisson noise, and the weights in the data-fit term in (2)

were chosen as wi = exp(−[Ax]i). We selected the regular-

ization parameter β such that the target PSF had a full-width

at half-maximum (FWHM) of approximately 1.3 mm.

For comparison, we used the (nonlinear) conjugate gradi-

ent algorithm to solve the original problem (2). To analyze

the convergence speed of the proposed method we computed
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the root mean squared (RMS) difference between the image

estimate at the nth iteration, x(n), with the “fully” converged

solution, x∞. For the Fair potential, the original MCIR prob-

lem is strictly convex and thus has a unique minimizer, x∞.

We numerically approximated x∞ as the mean of the images

reconstructed (assuming convergence) by running 1000 itera-

tions of CG and 700 iterations of the proposed method with

(10,10) sub-iterations.

Fig. 1 illustrates that the conventional filtered backprojec-

tion (FBP) method gives a reconstructed image with severe

motion artifacts whereas the motion-compensated image con-

tains much less motion artifacts. Some residual motion arti-

facts still exist due to imperfect motion estimates even though

they were obtained directly from the true XCAT images.

Fig. 2 illustrates that the proposed method converges

much faster in iterations compared to the conventional CG

method when we use enough sub-iterations with obvious

computation overhead. This result suggests that if we have

a proper preconditioner for each sub-problem, we can still

obtain fast convergence. We also investigated different op-

tions for the proposed method summarized in Fig. 2. Using

a preconditioner for sub-problems helped reduce the number

of sub-iterations while achieving fast convergence speed.
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Fig. 3. Plot of RMSD versus wall time for the proposed

method compared to the conventional CG method with 3 it-

erations for line-search. A diagonal preconditioner and a cir-

culant preconditioner were used for sub-problems (5) and (6)

respectively.

In Fig. 3, we compare the proposed method implemented

with sub-optimal preconditioners. We used a simple diagonal

preconditioner for (5) based on the diagonal elements of H

and a circulant preconditioner for (6) using the fact that G

contains A′

mAm, which is approximately shift invariant [6].

The proposed method shows faster convergence compared to

CG method. While the proposed method as implemented in

MATLAB provides significant improvement in convergence

speed over CG, we believe that the proposed method can fur-

ther be improved using proper code optimization and more

efficient implementations.

5. DISCUSSION

We applied a variable splitting approach to the motion-

compensated image reconstruction problem for cardiac CT.

The proposed method converges faster than the conjugate gra-

dient method, and offers the potential for parallelizabilty and

preconditioning of sub-problems. Some of the sub-problems

can be solved simultaneously or further divided into smaller

problems. By using more sophisticated preconditioners for

the sub-problems, the performance of the proposed method

can be further improved. In this study, we focussed on the

image reconstruction part of MCIR for cardiac CT, but our

method also can be applied to other multi-frame image re-

construction problems and extended to the problem of jointly

estimating the motion model and the image.
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