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ABSTRACT

Several magnetic resonance (MR) parallel imaging techniques re-
quire explicit estimates of the receive coil sensitivity profiles. These
estimates must be accurate over both the object and its surround-
ing regions to avoid generating artifacts in the reconstructed images.
Statistical estimation methods provide robust sensitivity estimates
but can be computationally expensive. In this paper, we propose an
augmented Lagrangian (AL) based method that estimates the coil
sensitivity by minimizing a quadratic cost function. This method re-
formulates the finite differencing matrix to allow for exact alternat-
ing minimization steps. We also explore a variation of our algorithm
that involves intermediate updating of the Lagrange multipliers. We
demonstrate that our proposed algorithm converges in half the time
of the traditional conjugate gradient method with a circulant precon-
ditioner (PCG) on a real data set.

Index Terms— coil sensitivity, augmented Lagrangian, quadratic
minimization, finite differences, parallel imaging

1. INTRODUCTION

Accurate radio-frequency coil sensitivity profiles are required in
many parallel imaging applications (e.g., [1]). Due to coil defor-
mation during patient setup and dielectric coupling, these profiles
must be determined at the time of acquisition [2]. One common
approach is to perform a calibration scan prior to the parallel imag-
ing acquisition in which images from a large body coil and multiple
surface coils are acquired and reconstructed. Since the body coil has
near uniform sensitivity, its image can be used in conjunction with a
surface coil image to estimate the surface coil sensitivity profile.

The most straightforward method to estimate the coil sensitiv-
ity is to compute the ratio of the surface coil image voxel values
(zi) to the body coil image voxel values (yi), zi/yi. Typically, such
estimates are corrupted due to measurement noise, particularly in
regions of low signal. Furthermore, ratio estimates have sharp dis-
continuities at object edges, contrary to the smooth nature of true
coil sensitivity profiles [3]. It is also important to have accurate sen-
sitivity estimates in any low signal regions surrounding the object to
avoid reconstruction artifacts that could arise due to patient motion
[4]. The ratio estimator, however, does not extrapolate; thus, more
advanced estimation methods are required.

One approach to generate smoother sensitivity estimates is to
measure only the center of k-space. Although simple, this approach
done not accurately estimate the sensitivity near object edges and
can introduce Gibbs ringing artifacts. Filtering procedures have also
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been proposed including polynomial fitting (see [3, 5]), wavelet de-
noising [6], and using thin-plate splines [7]. Yet these methods fail
to completely eliminate the Gibbs ringing, while selecting a partic-
ular basis function is complicated by the varying size of low signal
regions within the images [3]. Furthermore, many of these methods
disregard the non-stationary variance of the noise in the sensitivity
estimates. Alternatively, statistical estimation methods [3, 8] pro-
vide smooth estimates and are capable of extrapolation without the
need for basis function selection and explicit filtering. These meth-
ods, however, can be computationally expensive [3] and this cost is
compounded by the large number of coils in some arrays.

In this paper, we take a statistical approach and pose sensitivity
estimation as the minimization of a quadratic cost function like in
[3]. The large matrices in the cost function prevent one from comput-
ing a simple, direct solution to this problem. Instead, iterative meth-
ods must be used for large data sets. Due to the slow convergence
time of traditional methods like conjugate gradient (CG), we previ-
ously investigated an AL based method to minimize the cost function
[9]. However, that method was complicated by an approximate min-
imization step and its final convergence speed was similar to that of
PCG with a circulant preconditioner. We therefore propose a new
AL based estimation method that uses exact alternating minimiza-
tion steps. This approach is made possible by separating the finite
differencing matrix into two matrices with more exploitable struc-
tures. We also explore updating the Lagrange multipliers between
alternating minimization steps. Our improved algorithm, AL–Circ,
yields accurate estimates in half the time of PCG.

2. METHODS

This section introduces our method for MR coil sensitivity estima-
tion. We begin by posing the estimator as an optimization problem.
We then outline the general approach used to solve this problem and
present the specific algorithm in detail.

2.1. Cost Function Formulation

Statistical methods for MR coil sensitivity estimation are both robust
to noise and effective at extrapolating the estimate in regions of low
signal [3]. These methods avoid computing the quotient (zi/yi) by
expressing the problem as the minimization of a cost function con-
taining a data-fidelity term and a regularization term that promotes
smoothness in the estimate. Similar to [3], we estimate the sensitiv-
ity profile by minimizing a weighted sum of quadratic terms:

ŝ � arg min
s
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2
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2
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where s = [s1, . . . , sN ]T with si ∈ C being the desired coil sen-
sitivity at the ith voxel, z = [z1, . . . , zN ]T with zi ∈ C being the
surface coil image value at the ith voxel, D = diag{yi mi} is a di-
agonal matrix containing the body coil image voxel values (yi ∈ C)
multiplied by the corresponding values of a binary mask specify-
ing voxels with significant intensities (mi), R ∈ R

M×N is a finite
differencing matrix with non-periodic boundaries, and λ > 0 is a
regularization coefficient. The inclusion of a mask ensures that the
estimate is based primarily on pixels that provide meaningful sensi-
tivity information.

Equation (1) is quadratic and therefore has a closed-form solu-
tion; however, computing this solution is impractical due to the size
and complexity of R. Memory constraints further restrict the use
of other direct methods, such as Cholesky factorization, for large
problems like 3D data sets. Furthermore, standard iterative solution
methods such as CG exhibit slow converge for this problem even
when using carefully selected preconditioners. To address this, we
propose an AL based method to minimize the cost function.

2.2. Overview of Augmented Lagrangian Approach

Augmented Lagrangian based minimization techniques have been
used to accelerate convergence in imaging problems such as denois-
ing and reconstruction (see [10]). The focus of that work has been on
problems that contain non-differentiable regularization terms such as
those based on the �1-norm. However, the underlying theory applies
to a wide variety of optimization problems including our own. We
therefore follow a similar approach, with the development of our al-
gorithm consisting of three stages [10]. First, we reformulate the
finite differencing matrix and use variable splitting to convert the
unconstrained optimization problem into an equivalent constrained
problem. Second, we introduce vector Lagrange multipliers and ex-
press the constrained problem in an AL framework. Third, we solve
the resulting AL problem using an alternating minimization scheme.

2.3. AL–Circ Method

The drawback of our previous algorithm [9] was that it required an
approximate PCG solution for one of the alternating minimization
steps. We can avoid such a step by expressing the finite differencing
matrix as R = BC where C ∈ R

M×N is a typical finite differ-
encing matrix but with additional non-zero rows that penalize the
differences between pixels on opposing edges of the image and B

is a diagonal matrix that contains a binary mask to eliminate the ef-
fects of these added rows. UnlikeR, the additional rows inC ensure
thatCHC is block circulant with circulant blocks. Figure 1 presents
an illustration of these matrices for the case of 1D first-order finite
differences. We then re-express the estimation problem in (1) as

ŝ = arg min
s

1

2
‖z − Ds‖2

2 +
λ

2
‖BCs‖2

2. (2)

Next, we introduce two splitting variables, u0 ∈ C
M and

u1 ∈ C
N , to this new formulation to decouple the matrices D, B,

and C. The resulting constrained optimization problem is

arg min
s,u0,u1

Ψ(s,u0) s.t. u0 = Cu1 and u1 = s, (3)

where Ψ(s,u0) � 1
2
‖z − Ds‖2

2 + λ
2
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2
2. We then tackle (3)

using an AL formalism [10] that leads to the following AL function-
based minimization problem:
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Fig. 1. The upper portion of the matricesR,B, andC for the case of
1D first-order finite differences. Note that the top row ofC computes
the difference between the first and last pixels, hence the need for the
mask B.

where η0 ∈ C
M and η1 ∈ C

N are vectors of Lagrange multipliers
and ν0, ν1 > 0 are additional parameters that influence the conver-
gence rate but do not affect the final estimate.

Due to the complexity of jointly minimizing (4) over s, u0, and
u1, we consider an alternating minimization scheme. In particular,
we sequentially solve

s
(j+1) = arg min

s
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Equations (5) and (7) have simple closed-form solutions involving
the inversion of diagonal matrices (see Steps 1 and 5 in Figure 2).
The structure of C makes the closed-form solution to (6) appear
more complicated to compute:

u
(j+1)
1 =

»
C

H
C +

ν1

ν0
I

–
−1

„
C

H(u
(j)
0 − η

(j)
0 ) +

ν1

ν0
(s(j+1) + η

(j)
1 )

«
. (8)

However, since CHC is block circulant with circulant blocks,
CHC = QHΦQ where Q is a DFT matrix and Φ is a diagonal
matrix containing the spectrum of the convolution kernel of CHC.
Substituting this reformulation into (8) yields an exact, non-iterative
solution (Step 3 in Figure 2). This solution is much simpler to com-
pute because Φ2 is a diagonal matrix and Q can be implemented
with a fast Fourier transform (FFT).

Updating the Lagrange multipliers, η, between each alternating
minimization step has been shown to increase the convergence rate
of several AL based algorithms [11]. We therefore combine the pre-
vious alternating minimization steps with this updating scheme to
obtain AL–Circ, our proposed AL estimation algorithm shown in
Figure 2.

2.4. Parameter Selection

Our proposed AL method requires that we specify values for the
convergence parameters ν0 and ν1. Following [10], we determine
the parameter values using the condition numbers of the matrices
requiring inversion in the alternating minimization steps: B2, Φ2,
and D2 as defined in Figure 2. If we normalize and mask the body
coil image before performing the estimate, the condition number of
D2 (κ(D2)) will not depend on the data. Thus, we set our parame-
ters by considering the condition numbers of the other two matrices.
Through extensive experimentation, we found that setting ν0 such
that κ(B2) ∈ [250, 500] and then ν1 such that κ(Φ2) ∈ [200, 2000]
provided good convergence rates for a wide variety of data sets.
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Fig. 2. AL–Circ algorithm with intermediate Lagrange multiplier
updating (Steps 2 and 4). Note that Cu

(j+1)
1 only needs to be com-

puted once per iteration.

3. RESULTS

We evaluated our proposed sensitivity estimation method on real
breast phantom data. Since the accuracy of similar statistical estima-
tors has been established [3], we focused on comparing the conver-
gence properties of our AL algorithm with those of a CG approach
to (1). To ensure a fair comparison, we also implemented the CG
method with a circulant preconditioner:

PC = Q
H (I + λΩ)Q, (9)

where Ω is a diagonal matrix containing the spectrum of the convo-
lution kernel of RHR [12].

We evaluated the following algorithms: CG, PCG with a cir-
culant preconditioner (PCG–Circ), AL–Circ, and AL–Circ without
intermediate updating (AL–Circ–NI). All of the algorithms were
initialized with a zero estimate, i.e., s(0) = 0. We implemented the
algorithms in MATLAB (The MathWorks, Natick, MA, USA) and
ran the experiments on a PC with a 2.66 GHz, quad-core Intel Xeon
CPU.

We compared the convergence properties of the algorithms using
the normalized �2-distance between the current estimate, s(j), and
the converged estimate, ŝ:

D(s(j)) =
‖s(j) − ŝ‖2

‖ŝ‖2
. (10)

To facilitate the evaluation of our algorithms, we restricted ourselves
to a small 2D problem so that we could use Cholesky factorization
to determine a non-iterative solution to (1). Using this non-iterative
solution for ŝ avoids favoring a specific iterative algorithm.

3.1. Cost Function Setup

In defining the estimation problem, (1), we used a second-order finite
differencing matrix for R as it resulted in more accurate sensitivity
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Fig. 3. The magnitude of the breast phantom body coil image.

estimates than both first-order and fourth-order finite differences (re-
sults not shown). We determined the mask, m, by thresholding the
body coil image, y, so that the majority of voxels in the object sup-
port were included, while limiting the number of noisy, non-object
voxels. To determine the optimal regularization coefficient, λ, we
first estimated the coil sensitivities using the CG method and several
values of λ. We then performed two-fold accelerated SENSE recon-
structions [1] using each set of estimated sensitivities and compared
the resulting images to the body coil image. We selected λ = 25

as its corresponding reconstructed image had minimal artifacts and
matched closely to the body coil image.

We selected the AL–Circ parameter values so that κ(B2) = 265
and κ(Φ2) = 450. These parameter values were also used for
AL–Circ–NI.

3.2. Breast Phantom Data

We acquired breast phantom data using four surface coils and one
body coil on a Philips 3T scanner (TR = 4.6 ms, TE = 1.7 ms, ma-
trix = 384 × 96). We then reconstructed the corresponding four sur-
face coil images and one body coil image using an inverse FFT, Fig-
ures 3 and 4(a). Note that this data set presents several challenges
for sensitivity estimation due to the placement of coils near the cen-
ter of the field-of-view (FOV) and because of the large regions of
low signal both within and outside the object.

We estimated the coil sensitivities using our proposed AL meth-
ods and the CG methods. We ran 20 000 iterations of each algorithm
to ensure that convergence was achieved. The resulting estimates
were all close to one another, converging to within single preci-
sion of the Cholesky factorization based estimate, ŝ. Figure 4(b)
presents the estimated coil sensitivities generated by AL–Circ. The
convergence rates of the algorithms were similar for all four coils
and thus we present the results for one representative coil. Figure 5
plots D(s(j)) with respect to time for the far right coil in Figure 4.
AL–Circ was the fastest algorithm, reaching D(s(j)) = 0.1 % in
1100 iterations and approximately 50 s. The same AL algorithm
without intermediate updating, AL–Circ–NI, required 2000 it-
erations and 90 s. The CG based algorithms took longer, with
PCG–Circ requiring 2200 iterations and 110 s and standard CG
needing nearly 10 000 iterations and 425 s.

4. DISCUSSION

The final estimates generated by minimizing the cost function in (1)
are smooth like true coil sensitivities. The ability to estimate the sen-
sitivities of surface coils oriented between the breasts and within the
FOV demonstrates the flexibility of the statistical estimation method.
Specifically, our method captured the increased sensitivity in the
middle of the FOV and accurately estimated the decreasing sensi-
tivity over both breasts for these coils.

Our AL based method and its variation converged faster than
the CG based methods. Most significantly, AL–Circ converged in
approximately half the time of PCG–Circ and one eighth the time
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Fig. 4. The magnitude of the (a) surface coil images (top row) and the (b) corresponding sensitivity estimates (bottom row).
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Fig. 5. Plots of the normalized �2-distance between s(j) and ŝ,
D(s(j)), with respect to time for the far right coil in Figure 4.

of traditional CG. It should also be noted that a nearly two fold im-
provement in convergence rate was obtained for the AL algorithm by
updating the Lagrange multipliers between alternating minimization
steps.

Our proposed algorithm is highly robust to the particular choice
of convergence parameter values. In fact, the same parameter values
were used in experiments on a simulated brain data set with similar
results (not shown). Furthermore, the optimal parameter values do
not depend on the surface coil image. Thus, one only has to deter-
mine the optimal parameters for a single coil of a multi-coil array.

While there is no guarantee of convergence for our proposed al-
gorithm, it has converged in every experiment we have attempted.
We are currently investigating an alternating direction method of
multipliers (ADMM) [13] adaptation of AL–Circ that has a proof
of convergence.

5. CONCLUSIONS

We have presented a novel augmented Lagrangian based sensitivity
estimation method that converges in half the time of the traditional
method, PCG. These time savings are particularly significant when
working with large coil arrays. Our proposed AL method separates
the finite differencing matrix into components with more exploitable
structures. This approach allows for a final algorithm with exact
alternating minimization steps. Furthermore, we were able to signif-
icantly accelerate our AL algorithm by updating the Lagrange multi-
pliers between minimization steps. Similar AL algorithms could be
applied to other estimation problems with quadratic regularization
(e.g., [14]); however, this remains an open problem.
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