
GPU Acceleration of 3D Forward and Backward

Projection Using Separable Footprints for X-ray CT

Image Reconstruction
Meng Wu and Jeffrey A. Fessler

Abstract—Iterative 3D image reconstruction methods can im-
prove image quality over conventional filtered back projection
(FBP) in X-ray computed tomography. However, high compu-
tational costs deter the routine use of iterative reconstruction
clinically. The separable footprint method [1] for forward and
back-projection simplifies the integrals over a detector cell in a
way that is quite accurate and also has a relatively efficient CPU
implementation. In this project, we implemented the separable
footprints method for both forward and backward projection on a
graphics processing unit (GPU) with NVDIA’s parallel computing
architecture (CUDA). This paper describes our GPU kernels for
the separable footprint method and simulation results.

I. INTRODUCTION

Iterative statistical methods for 3D tomographic image re-

construction offer the potential for improved image quality

and reduced dose compared to conventional methods such

as filtered back-projection (FBP). The main disadvantage of

iterative reconstruction methods is the longer computation

time. Most iterative reconstruction methods require one for-

ward projection and one back-projection per iteration. These

operations are the primary computational bottleneck.

The study of fast and efficient reconstruction algorithms

for large 3D images and their implementation on hardware

and in software is important both theoretically and practi-

cally [2]. The separable footprint (SF) projectors approximate

the voxel footprint functions as 2D separable functions [1].

This approximation is reasonable for typical axial or helical

cone-beam CT geometries. The separability of these footprint

functions greatly simplifies calculating their integrals over a

detector cell and allows efficient implementation [1]. GPUs

provide high performance for highly parallel computations [3],

[4]. This paper describes how we adapted the SF projector

algorithm to a high-end multi-GPU platform using the com-

pute unified device architecture (CUDA) API from NVDIA.

There are many ways to adapt the algorithms to GPU. We

investigated several different kernel and memory structures for

GPU implementation to optimize speed. We also compared

GPU and CPU run times by simulating a typical helical CT

scan.

Dept. of Electrical Engineering and Computer Science, University of Michi-
gan, 1301 Beal Ave., Ann Arbor, MI 48109-2122, U.S.A. Email: {febmeng,
fessler} @umich.edu. Supported in part by NIH grant R01-HL-098686.

II. SEPARABLE FOOTPRINT METHOD

Mathematically, any 3D projector and back-projector for

helical or axial CT can be represented in the general form:

g(s, t, β) =
∑

x,y,z

a(s, t, β; x, y, z)f(x, y, z), (1)

b(x, y, z) =
∑

s,t,β

a(s, t, β; x, y, z)g(s, t, β),

where f(x, y, z) and b(x, y, z) denote the image voxel values

at 3D spatial location x, y, z, and g(s, t, β) denotes the mea-

sured projection views. The parameter β indexes the projection

view angles and s, t denote the transaxial and axial coordinates

of a 2D projection view. We assume that the row coordinate t
on the detector is aligned with the axial coordinate z within the

object. The function a(s, t, β; x, y, z) is the system model and

denotes the footprints of the voxel centered at x, y, z blurred

by the detector element size.

The SF method [1] models the (blurred) footprint function

as follows:

a(s, t, β; x, y, z) = v(s, t, β)u(β; x, y)

· F1(s, β; x, y)F2(t, β; x, y, z), (2)

where the footprint functions F1 and F2 approximate the shape

of the true footprint for small cone angles. F1 is a trapezoid

function in the transaxial direction and F2 is a rectangular

function in the axial direction, called the SF-TR method. The

factors u(β; x, y) and v(s, t, β) are simple amplitude functions

described in [1] as the “A2” method, and they require minimal

computation time. The main computational work is related to

F1 and F2. Because F1 depends only on s (detector column)

and F2 depends only on t (detector row), the SF-TR-A2

method has a particularly good trade-off between accuracy and

computation time so we focused on its GPU implementation.

The units of a are cm so that the reconstructed image f has

linear attenuation units 1/cm.

A. Forward projection parallelization

For a single-core system it is natural to work on one

projection view at a time. Likewise, a simple approach to

parallelization is to have each thread work simultaneously on a

distinct single projection view, so that n threads produce n pro-

jection views concurrently. However, parallelizing only over

projection views would be a suboptimal GPU implementation,

because GPUs usually have many more thread processors than

56 3rd Workshop on High Performance Image Reconstruction



a multi-core CPU. The thread processors within a GPU are

more suitable for running massively parallel single instructions

than for the complex computations required for an entire

projection view. Thus it can be preferable to use a GPU’s

many threads in parallel to compute a single projection view.

For threads working on a single value of β (a single

projection view), we first initialize an accumulation array:

g(s, t, β) = 0. The key to efficient implementation is to

rewrite (1) using the distributive property of addition and

multiplication and the separability (2) as follows:

g(s, t, β) = v(s, t, β)
∑

x,y

F ′
1(s, β; x, y)·

[∑

z

F2(t, β; x, y, z)f(x, y, z)

]
, (3)

where we define the modified transaxial footprint function:

F ′
1(s, β; x, y) = u(β; x, y)F1(s, β; x, y). (4)

The inner sum over z (within square brackets in (3)) does not

depend on s, i.e., it involves only the axial direction. For a

single view, β is a fixed constant, so one natural approach to

parallelization is to perform the axial summation over z for

several (x, y) locations concurrently, yielding 1D arrays in t:

h(t, β; x, y) =
∑

z

F2(t, β; x, y, z)f(x, y, z). (5)

Then, for each detector row (each t value) we add

F ′
1(s, β; x, y)h(t, β; x, y)

to the running accumulator, i.e.,

g(s, t, β) += F ′
1(s, β; x, y)h(t, β; x, y), (6)

∀s ∈ [smin(β; x, y), smax(β; x, y)],

where smin and smax define the transaxial support of the

footprint for each voxel column (each x, y value):

{s : F ′
1(s, β; x, y) 6= 0} ⊆ [smin(β; x, y), smax(β; x, y)].

After computing (5) for some (or all) of the (x, y) locations,

threads can then compute (in parallel) the footprint values

F ′
1 in (4) for the same set of (x, y) locations. Alternatively

the threads could compute these footprints before computing

(5); this approach might seem slightly suboptimal, because

the transaxial footprints F ′
1 for a given (x, y) location are

not needed until after (5) is computed. However, some of the

geometric factors needed for computing F2 are also relevant

to computing F ′
1, and F ′

1 requires very little storage, so

this alternative approach may be the most efficient. Having

computed the axial sums (5) and the footprint values F ′
1 in

(4), the next step is to perform the accumulation (6).

For a thread working on a single value of β, we can

loop over (x, y), and do the accumulation (6) for each (x, y)
location sequentially. However, in a GPU implementation,

there is a subtlety that in general the footprints of different

voxels overlap, so parallelization across arbitrary (x, y) values

(or arbitrary s values) would cause read-write errors. One

standard way of preventing such errors is to use a mutex

or a conditional variable to ensure that only one thread at

Fig. 1. Parallelization of grouped s locations with disjoint footprints. Because
the maximum of footprints along s direction is 4, we put every 4 consecutive
detector cells into a group. One thread can update the shaded voxels, having
smin at the first detector cell of each group, simultaneously to its own s-group
without memory conflicts. After four steps, all voxels have contributed to the
projection view.

a time is allowed to update the view at given s value. The

CUDA environment has no efficient mechanism for avoiding

such read-write errors. Using shared memory and/or synchro-

nizing after each update could prevent the errors, but would

significantly increase computation time.

To overcome this problem, we choose the set of (x, y)
values that are parallelized during the accumulation (6) such

that their corresponding footprints do not overlap. Instead of

parallelizing over all (x, y) values, we let each GPU thread

processor update only a specific group of detector cells. For

example, Fig. 1 illustrates a simple case where 4 threads are

running for a 16 × 1 detector. Because typically Ns is many

hundreds, and the maximum footprint size along s usually is

small, there is opportunity for substantial parallelization across

s in this way. For example, Ns = 888 for a typical GE CT

scanner and if smax − smin < 10 then more than 80 threads

can work simultaneously with no read-write errors. It is easy

to identify suitable collections of (x, y) locations because we

must compute smin(β, x, y) anyway and we can group together

(x, y) locations that have the same value of smin(β, x, y). We

found that the upper bound on the size of a set is twice the

image transaxial size (2 × Nx). In addition, because each

detector row (t value) is incremented independently in (6),

this accumulation is amenable to parallelization over t. For a

helical scan, the number of z values (slices) is much larger

than the number of t values (detector rows), so we can further

parallelize the method by computing the projection views

having same projection angle β concurrently.

3rd Workshop on High Performance Image Reconstruction 57



B. Back-projection parallelization

The back-projection operation for SF-TR-A2 has the form:

b(x, y, z) =
∑

x

∑

y

F2(t, β; x, y, z) ·
[∑

s

F ′
1(s, β; x, y)(v(s, t, β)g(s, t, β))

]
(7)

To implement this operation it is again natural to work on one

view at a time (one value of β). Before starting the loop over

β, we initialize the back-projection array b(x, y, z) = 0. The

first step is to multiply the projection view g(s, t, β) by the

ray-dependent amplitude factors:

g′(s, t, β) = v(s, t, β)g(s, t, β). (8)

This multiplication can be easily parallelized over (s, t) values.

The CPU can do this step very quickly and it has very small

influence on total computational time. The next step is to

compute the inner products along s in (7):

h(t, β; x, y) =
∑

s

F ′
1(t, β; x, y)g′(s, t, β). (9)

Each GPU thread can perform this summation for several

(x, y) locations and t values. For this step each thread needs to

perform up to 10 multiplies and adds, and then store just one

h(t; x, y, β) for each (x, y) and t value. This process yields a

data structure with size Nx×Ny×Nt in GPU global memory,

which can be acceptable storage. After a thread computes

h(t; x, y, β), it increments the back-projection accumulation

array along z as follows:

b(x, y, z) +=
∑

t

F2(t, β; x, y, z)h(t, β; x, y). (10)

Because each thread works on disjoint (x, y) locations, read-

write problems are prevented by parallelizing over all (x, y, z)
locations of the 3D image. By analogy with (5), for a given

z value typically there will be only a very small number of

t values for which F2 is nonzero; in fact typically at most 3

values for a multi-slice CT scanner geometry with the natural

slice thickness. For a helical scan, the number of z values (Nz

slices) is much larger than the number of t values (Nt detector

rows), so each projection view will modify only a small part

of the 3D image. Thus, we need only 3×Nx×Ny×Nt threads

rather than Nx × Ny × Nz to implement (10) efficiently.

III. GPU IMPLEMENTATION AND SIMULATION RESULTS

We implemented the forward and backward projectors on a

GPU with NVDIA’s CUDA environment. We separated the

algorithms into several kernels and optimized the number

of declared threads for each kernel to help ensure all GPU

threads work efficiently. We simulated the geometry of a GE

LightSpeed X-ray CT system with an arc detector of Ns = 888
detector channels for Nt = 64 detector rows with Nβ = 984
views over 360o for a 3D object of size 512× 512× 640. We

evaluated the elapsed time using the average of 5 projector

runs on a 12-core, 4-GPU server with two 2.66 GHz Xeon

X5650 processors and four 1.15 GHz NVDIA Tesla C2050

graphic cards. Because of the “hyperthreading” of the Intel

Nehalem architecture, for the CPU version we used 24 POSIX

threads where each thread computes a set of projection views.

A. Forward projection

The proposed forward projector uses the following steps.

The indented kernel steps following each “parfor” execute in

parallel.

• Initialize projection view array to zero: g(s, t, β) = 0.

• CPU loop: for each projection angle β:

1) GPU kernel 1: parfor each x and y (Nx × Ny):

– Compute and store F ′
1(s, β; x, y).

– Compute and store smin(β; x, y).

2) CPU function: For each x and y:

– Construct voxel sets according to smin.

3) CPU loop: for each detector row group

(loop from 0 to 9 for GE CT scan):

– GPU kernel 2: parfor each s and t ([Ns

10 ] × Nt).

∗ For each voxel set (loop over 2 × Nx):

· Compute h(t, β; x, y, z) in (5).

· Run accumulation (6) into local array.

∗ Increment projection view using local arrays

– GPU kernel 3: parfor each s and t (Ns × Nt):

∗ Scale the projection view by u(s, t, β).

Table 1 shows the computation time of the GPU kernels

and the CPU function for a single 360◦ turn. The CPU

function only reads smin with a loop over (x, y) and then

constructs voxel sets, but it consumes the most time for

forward projection. It is unclear if it can be parallelized. That

means in this algorithm, voxel set construction time in CPU

is one of the largest limitations to GPU acceleration.

TABLE I
FORWARD PROJECTION COMPUTATION TIME FOR 1 HELICAL TURN.

GPU kern. 1 CPU func. GPU kern. 2 GPU kern. 3 Total

7.8 s 9.9 s 2.1 s 1.1 s 20.9 s

Fortunately, most helical CT scan use multiple turns around

the object. Projection views at same projection angle β have

exactly same values of F ′
1, F2, u, v. Only the relevant image

slices f(x, y, z) differ when GPU kernel 2 computes (5).

Therefore, we can use the results from GPU kernel 1 and the

CPU function for every projection view having the same pro-

jection angle β, saving considerable redundant computation.

In addition, we also further parallelized over the projection

views in GPU kernels 2 and 3. There is also a limitation in

this parallelization. Because a CUDA block has at most 512

threads, and we want to put threads with same t value in

one block to use shared memory, we can parallelize at most

8(512/Nt) projection views in GPU kernel 2. In GPU kernel 2,

threads that have same s values use the same voxel sets.

Because these threads use the same F ′
1(s, β; x, y) and smin

values, storing these values in shared memory can significantly

58 3rd Workshop on High Performance Image Reconstruction



Fig. 2. Computation times for CPU and GPU implementations for different
numbers of helical turns when parallelizing over projection views at same
angle.

reduce the time spent reading data from the global memory.

Fig. 2 shows that, in general, more helical turns leads to larger

accelerations in our GPU implementation.

Our test case with a GE CT scan geometry uses about

640 MB for the 3D image, 2 MB for 8 projection views,

10 MB for F ′
1, F2, u, v and other values. The total GPU global

memory used is less than 1 GB. Thus, the Tesla C2050 with

3 GB total memory can easily support our GPU implemen-

tation. The global memory accesses are about 12NxNy in

kernel 1, and 22NsNt in kernels 2 and 3.

B. Back projection

The proposed back projector uses the following steps:

• Initialize image data array to zero, i.e., b(x, y, z) = 0.

• Scale the projection views with u(s, t, β) per (8).

• For each projection view at angle β:

1) GPU kernel 1: parfor each x and y (Nx · Ny):

– Compute and store F ′
1(s, β; x, y).

– Compute and store smin and smax.

2) GPU kernel 2: parfor each x, y and t (Nx ·Ny ·Nt):

– Compute and store h(t; x, y, β) in (9).

3) GPU kernel 3: parfor each x, y and relevant z
(Nx · Ny · 3Nt):

– Compute accumulation (10) array along z.

After computing kernel 1, we loop over projection views

having the same angle β in kernels 2 and 3, as in forward

projection, to avoid redundant computation. The global mem-

ory used in our test case is about 640 MB for the image, 2 MB

for projection views, 64 MB for h(t; x, y, β) and 10 MB for

F ′
1, F2, u, v and other variables. The total global memory is

still less than 1 GB. The global memory accesses are about

12NxNy in kernel 1, NtNxNy in kernel 2 and 3NxNyNt

in kernel 3. Shared memories are used in kernel 2 to store

F ′
1, smin, and smax and the step size along z direction in

kernel 3. Because projection data could be read up to 3Nx

times in kernel 2, we used the GPU texture memory to

store the projection view, so that kernel 2 reads them from

cached texture memory. This may save much computation time

compared to using global memory.

TABLE II
FORWARD AND BACK PROJECTION COMPUTATION TIME OF 24-THREAD

CPU VERSION AND OF GPU VERSIONS FOR 8 HELICAL TURNS.

CPU single GPU dual GPU quad GPU

Forward projection 145 s 52 s 45 s 45 s

Back projection 156 s 114 s 71 s 50 s

C. Using multiple GPUs

Using multiple GPUs in parallel is another acceleration

method. Our sever has 4 Tesla GPUs. Ideally, the computa-

tional time would be reduced by the number of GPU devices.

We used POSIX threads to implement multiple CPU threads,

each of which is assigned to control one GPU device. We used

different strategies to distribute the computation for forward

and backward projection in SF methods. For forward pro-

jection, we divided the projection views by projection angle.

For back projection, we divided the image into several parts

along x or y direction. Table II summarizes the computation

times. Although multiple GPUs provided some acceleration,

the reduction is less than ideal, particularly for more than two

GPUs, presumably due to memory bandwidth limits. More

investigation is needed for this part.

IV. SUMMARY

We presented GPU accelerated implementations of both the

forward and backward projection algorithms for the separable

footprints method. The dual GPU version runs 2-3 times

faster than a 24-thread CPU version on a 12-core Nehalem

system, due to the GPU’s fast massively parallel computational

ability and quick memory access times. Further improvement

of the multi-GPU version is needed. Some of the ideas

developed for the GPU implementation may also benefit a

revised CPU version and we plan to investigate that next to

better understand the relative benefits of CPUs and GPUs for

iterative reconstruction in computed tomography. Either choice

of hardware will involve substantial parallelism and adapting

the algorithms to such architectures is important.

ACKNOWLEDGMENT

The authors would like to thank Yong Long for her avail-

ability to answer questions, and Ryan James, Matt Lauer and

Esther Wei for their former work on this project.

REFERENCES

[1] Y. Long, J. A. Fessler, and J. M. Balter, “3D forward and back-
projection for X-ray CT using separable footprints,” IEEE Trans. Med.

Imag., vol. 29, no. 11, pp. 1839–50, Nov. 2010. [Online]. Available:
http://dx.doi.org/10.1109/TMI.2010.2050898

[2] K. Mueller, F. Xu, and N. Neophytou, “Why do commodity graphics
hardware boards (GPUs) work so well for acceleration of computed
tomography?” in SPIE Electronic Imaging, vol. 6498, 2007, p. 64980N.
[Online]. Available: http://dx.doi.org/10.1117/12.716797

[3] D. B. Kirk and W. W. Hwu, Programming massively parallel processors:

A hands-on approach. Morgan Kaufmann, 2010. [Online]. Available:
http://www.elsevierdirect.com/companion.jsp?ISBN=9780123814722

[4] J. Sanders and E. Kandrot, CUDA by example: An introduction to general-

purpose GPU programming. Addison-Wesley, 2010.

3rd Workshop on High Performance Image Reconstruction 59


