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ABSTRACT

Using sparsity-based regularization to improve magnetic resonance
image (MRI) reconstruction quality demands computation-intensive
nonlinear optimization. In this paper, we develop an iterative algo-
rithm based on the method of multipliers—augmented Lagrangian
(AL) formalism—for reconstruction from sensitivity encoded data
using sparsity-based regularization. We first convert the uncon-
strained reconstruction problem into an equivalent constrained opti-
mization task and attack the constrained version in an AL framework
using an alternating direction minimization method—this leads to an
alternating direction method of multipliers whose intermediate steps
are amenable to parallelization. Numerical experiments with in-vivo
human brain data illustrate that the proposed algorithm converges
faster than both general-purpose optimization algorithms such as
nonlinear conjugate gradient (NCG) and state-of-the-art MFISTA.

Index Terms— Parallel MRI, SENSE, Image Reconstruction,
Regularization, Multiplier Methods

1. INTRODUCTION

SENSitivity Encoding (SENSE) [1, 2] is a parallel MRI (pMRI)
technique that depends on the sensitivity maps of the coil array.
Standard reconstruction methods for SENSE suffer from SNR degra-
dation due to k-space undersampling and instability arising from
correlation in sensitivity maps [1]. As an attractive means of restor-
ing stability in the reconstruction mechanism, sparsity-promoting
regularization criteria have gained popularity in MRI [3, 4] due to
advances in compressed sensing (CS) theory. Here, we investigate
the problem of regularized reconstruction from sensitivity encoded
data—SENSE-Reconstruction—using sparsity-promoting regular-
ization. We formulate image reconstruction as an unconstrained
optimization problem where we obtain the reconstructed image,
x̂, by minimizing a cost function, J(x), composed of a quadratic
data-fidelity term and a sparsity-regularization term, Ψ(x). Sparsity-
regularization criteria are “non-smooth” (i.e., they may not be differ-
entiable everywhere) and require solving a nonlinear optimization
problem using iterative algorithms.

This paper presents an accelerated algorithm for regularized
SENSE-reconstruction based on the method of multipliers, specif-
ically, the augmented Lagrangian (AL) formalism [5] for solving
large-scale constrained problems: We first convert the unconstrained
regularized SENSE-reconstruction problem, P0, into an equiva-
lent constrained optimization task, P1, using a variable splitting
scheme (different from those in [6, 7]) that separates the various
components of J . Then, we construct an augmented Lagrangian
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(AL) function [5] (that includes a Lagrange multiplier term) for
P1 and minimize it iteratively (while taking care to update the La-
grange multiplier) to solve P0. We apply an alternating scheme
that decouples the minimization of the AL function and simpli-
fies optimization: The resulting algorithm—alternating direction
method of multipliers (ADMM)—is a “block”-variant of that devel-
oped in [8, Sec. 3] and is convergent. Numerical experiments with
in-vivo human brain data demonstrate that the proposed ADMM
converges faster (to a solution of the unconstrained regularized
SENSE-reconstruction problem) than general-purpose optimization
algorithms such as NCG (that has been applied for CS-(p)MRI in
[3, 4]), and the recently proposed state-of-the-art Monotone Fast
Iterative Shrinkage-Thresholding Algorithm (MFISTA) [9].

2. REGULARIZED SENSE-RECONSTRUCTION
We formulate regularized SENSE-reconstruction as

P0: x̂ = argmin
x

{
J(x) =

1

2
‖d− FSx‖22 +Ψ(x)

}
, (1)

where x is a N × 1 column vector containing the samples of the
unknown image to be reconstructed, d is a ML × 1 column vector
corresponding to the data-samples from L coils, S is a NL×N ma-
trix given by S = [SH

1 · · ·SH
L ]

H, Sl is a N ×N (possibly complex)
diagonal matrix corresponding to the sensitivity map of the lth coil,
1 ≤ l ≤ L, (·)H represents the Hermitian-transpose, F = IL ⊗ Fu,
Fu is a M × N Fourier encoding matrix, IL is the identity matrix
of size L and ⊗ denotes the Kronecker product. The subscript ‘u’ in
Fu signifies the fact that the k-space may be undersampled to reduce
scan time, i.e., M ≤ N . The formulation P0 can also be used to deal
with correlated noise after applying a suitable noise-decorrelation
procedure [2, App. B].

For Ψ, we consider the following �1-regularization (“analysis”
form): Ψ(x) = λ‖Wx]‖1, where λ > 0 is the regularization pa-
rameter and Wx represents coefficients of the undecimated Haar-
wavelet transform excluding the approximation level. The proposed
method can be extended easily to deal with synthesis formulations
and to include other regularizers involving orthonormal wavelets,
total-variation and combinations thereof.

3. ADMM FOR REGULARIZED SENSE-
RECONSTRUCTION

This section develops a reconstruction algorithm using the method of
multipliers [5] for rapid minimization of J in (1). The basic idea is
to break down P0 into smaller tasks by introducing “artificial” con-
straints that are designed so that the sub-problems become decoupled
and can be solved relatively easily.

3.1. Variable Splitting
Our strategy is to apply variable splitting to P0 where we replace
linear transformations of x (such as Sx and Wx) in J with a set
of auxiliary variables {ul}. Then, we frame P0 as an equivalent
constrained problem:
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P1: min
u0,u1,u2,x

{
f(u0,u1)

�

=
1

2
‖d − Fu0‖22 + λ‖u1‖1

}
subject to u0 = Sx,u1 = Wu2,u2 = x, (2)

which can be concisely rewritten as

P1 : min
u

f(u) subject to Cu = 0, (3)

where C is a N1 ×N2 matrix given by

C
�

=

⎡
⎣ INL 0 0 −S

0
√
ν1IW −√

ν1W 0

0 0
√
ν2IN −√

ν2IN

⎤
⎦, u

�

=

⎡
⎢⎣

u0

u1

u2

x

⎤
⎥⎦,

u0 ∈ C
NL, u1 ∈ C

W , u2,x ∈ C
N , W is the number of rows of

W, N1 = NL + W + N , N2 = NL + W + 2N , and ν1,2 >
0 are scalars (whose purpose is explained in Section 3.3.1) that do
not affect the solution of P1. The splitting in (2) differs from those
in [6, 7] in that it not only separates the regularization and data-
fidelity terms (using u1), but also splits the components inside the
data-fidelity i.e., F and S (using u0) and decouples S and W (using
u2). This form of splitting (using u0,1,2) leads to simple matrix-
inverses in the optimization [see Section 3.3.1)].

3.2. Augmented Lagrangian (AL) Formalism
Constrained problems of the type P1 can be effectively handled in
a multiplier-method-framework [5]. Specifically, we use the aug-
mented Lagrangian (AL) formalism where an AL function is con-
structed for P1 as

L1(u,γγγ, μ)
�

= f(u) + γγγH
Cu+

μ

2
‖Cu‖22 (4)

with penalty parameter μ > 0 and Lagrange multiplier γγγ ∈ C
N1 .

The AL scheme for solving P1 alternates between minimizing L1

with respect to u for a fixed γγγ and updating γγγ:

u
(j+1) = argmin

u

L1(u,γγγ
(j), μ), (5)

γγγ(j+1) = γγγ(j) + μCu
(j+1), (6)

until some stopping criterion is satisfied. Importantly, (5)-(6) con-
verge to a solution of P1 (and P0) without the need for changing
μ [5]. The AL function L1 in (4) can be simplified by grouping
together the terms involving Cu as

L1(u,ηηη
(j), μ) = f(u) +

μ

2
‖Cu− ηηη(j)‖22 + Cγγγ , (7)

where Cγγγ is an irrelevant constant that we ignore henceforth and

ηηη
�

= − 1
μ
γγγ so that (6) becomes ηηη(j+1) = ηηη(j) −Cu

(j+1).
Applying (5)-(6) to P1 requires the joint minimization of L1

with respect to u0,1,2 and x in (5). Since this can be computationally
challenging, we develop below an alternating minimization method
similar to [8] that decouples the problem with respect to u0,1,2 and
x, thereby simplifying optimization.

3.3. An Alternating Minimization Scheme
We rewrite P1 in the spirit of [8, Sec. 3] as

P2: min
u,v

f(u) + g(v) subject to [A −I2N1
]

[
u

v

]
= 0, (8)

where1
A is a 2N1×N2 matrix with full column-rank given by

1Note that (9) is a “block”-variant of [8, Eq. (18)].

ADMM for Regularized SENSE-Reconstruction
1. Select u(0), v(0), ηηη(0), and μ, ν1, ν2 > 0; set j = 0
Repeat:

2. u(j+1)
0 = argmin

u0

{
1

2
‖d− Fu0‖22 + μ

2
‖u0 − v

(j)
0 − ηηη

(j)
0 ‖22

}
3. u(j+1)

1 = argmin
u1

{
λ‖u1‖1 + μ

2
‖√ν1u1 − v

(j)
2 − ηηη

(j)
2 ‖22

}

4. u(j+1)
2 = argmin

u2

{
‖√ν1Wu2 + v

(j)
3 + ηηη

(j)
3 ‖22

+‖√ν2u2 − v
(j)
4 − ηηη

(j)
4 ‖22

}

5. x(j+1) = argmin
x

{
‖Sx+ v

(j)
1 + ηηη

(j)
1 ‖22

+‖√ν2x+ v
(j)
5 + ηηη

(j)
5 ‖22

}

6. v(j+1) = argmin
v∈Ω

μ

2
‖Au

(j+1) − v − ηηη(j)‖22
7. ηηη(j+1) = ηηη(j) − (Au

(j+1) − v
(j+1))

8. Set j = j + 1
Until stop criterion is met

A
�

=

⎡
⎢⎢⎢⎢⎢⎣

INL 0 0 0

0 0 0 −S

0
√
ν1IW 0 0

0 0 −√
ν1W 0

0 0
√
ν2IN 0

0 0 0 −√
ν2IN

⎤
⎥⎥⎥⎥⎥⎦ , (9)

g(v)
�

=

{
0, v ∈ Ω
+∞, v /∈ Ω

, Ω
�

= {v ∈ C
2N1 | Bv = 0},

v = [vH
0 v

H
1 · · ·vH

5 ]
H, the component vi corresponds to the block-

row Ai· of A, i = 0, 1, · · · , 5, and B is a N1×2N1 matrix:

B
�

=

⎡
⎣ INL INL 0 0 0 0

0 0 IW IW 0 0

0 0 0 0 IN IN

⎤
⎦

that satisfies
BA = C, (10)

BB
T = 2IN1

. (11)

From (8)-(11) and the definitions of g(·) and Ω, it is verified that
P2 is equivalent to P1. We now apply the AL formalism to the con-
strained problem P2 and construct an AL function similar to (7):

L2(u,v,ηηη, μ)
�

= f(u) + g(v) +
μ

2
‖Au− v − ηηη‖22, (12)

where ηηη
�

= [ηηηH
0 ηηηH

1 · · ·ηηηH
5 ]

H ∈ C
2N1 one component for each block-

row of A. However, instead of carrying out the conventional AL
steps (similar to (5)-(6))

(u(j+1),v(j+1)) = argmin
u,v

L2(u,v,ηηη
(j), μ), (13)

ηηη(j+1) = ηηη(j) − (Au
(j+1) − v

(j+1)), (14)

we apply alternating direction minimization [8]:

u
(j+1) = argmin

u

L2(u,v
(j),ηηη(j), μ), (15)

v
(j+1) = argmin

v

L2(u
(j+1),v,ηηη(j), μ), (16)

ηηη(j+1) = ηηη(j) − (Au
(j+1) − v

(j+1)). (17)

Due to the structure of A, (15) further decouples into the minimiza-
tion of L2(·,v(j),ηηη(j), μ) with respect to u0, u1, u2 and x individ-
ually. This leads to the alternating direction method of multipliers
(ADMM) [8] given above (where we have ignored constants irrele-
vant for optimization in Steps 2-6). Because Steps 2-6 accomplish
(15)-(16), a variant of [8, Th. 3.1] ensures convergence of ADMM
to a solution of P2 (and P0).

386



  0.1

 31.6

 63.2

 94.8

126.4

  158

189.6

221.2

252.8

284.3

315.9

347.5

  0.4

   32

 63.6

 95.1

126.7

158.2

189.8

221.3

252.9

284.4

  316

347.5

  0.4

   32

 63.6

 95.1

126.7

158.2

189.8

221.3

252.9

284.4

  316

347.5

  0.4

   32

 63.6

 95.1

126.7

158.2

189.8

221.3

252.9

284.4

  316

347.5

    0

  9.6

 19.2

 28.7

 38.3

 47.9

 57.5

 67.1

 76.6

 86.2

 95.8

105.4

(a) (b) (c) (d) (e) (f)
Fig. 1. Experiment with in-vivo human brain data (Slice 38): (a) Body-coil image (from fully-sampled phase-encodes); (b) Poisson-disk-based
k-space sampling pattern (on a Cartesian grid) with reduction factor � 6; (c) Square-root of SoS (SRSoS) of coil images (from undersampled
data); (d) Conventional SENSE-reconstruction [1] corresponding to Cartesian sub-sampling by 3× 2; (e) The solution x

(∞) to P0 obtained
by running MFISTA-20; (f) Absolute difference between (a) and (e).

3.3.1. Minimization with respect to u—Steps 2-5 of ADMM
The cost functions corresponding to u0, u2, and x in Steps 2, 4,
and 5, respectively, are all quadratic in nature and have closed form
solutions:

u
(j+1)
0 = H

−1
μ (FH

d+ μ(v
(j)
0 + ηηη

(j)
0 )), (18)

u
(j+1)
2 = H

−1
ν1ν2

[ √
ν2(v

(j)
4 + ηηη

(j)
4 )

−√
ν1W

H(v
(j)
3 + ηηη

(j)
3 )

]
, (19)

x
(j+1) = H

−1
ν2

[
−√

ν2(v
(j)
5 + ηηη

(j)
5 )

−S
H(v

(j)
1 + ηηη

(j)
1 )

]
, (20)

where Hμ = (FH
F + μIML), Hν1ν2 = (ν1W

H
W + ν2IN ),

and Hν2 = (SH
S+ ν2IN ). Although μ, ν1 and ν2 do not affect the

solution to which ADMM converges, they determine its convergence
speed. We adjust μ, ν1 and ν2 so as to obtain condition numbers
κ(Hμ), κ(Hν1ν2), κ(Hν2) of Hμ, Hν1ν2 , and Hν2 , respectively,
that yield fast convergence of ADMM.

When the k-space samples lie on a Cartesian grid, Fu corre-
sponds to a sub-sampled DFT matrix in which case we solve (18)
exactly using FFTs. For non-Cartesian k-space trajectories, comput-
ing u

(j+1)
0 requires an iterative method. For example, a conjugate

gradient (CG) solver (with warm starting, i.e., to obtain u
(j+1)
0 , the

CG algorithm is initialized with u
(j)
0 ) can be used for Step 2. Since

W constitutes an undecimated wavelet transform, WH
W is circu-

lant under periodic boundary conditions. Then, we compute u
(j+1)
2

exactly using FFTs. Finally, Hν2 is diagonal (due to the diagonal
nature of SH

S) and is therefore exactly inverted to yield x
(j+1).

Minimization with respect to u1—Step 3—can be decoupled in
terms of its components, i.e., for n = 1, 2, . . . ,W ,

u
(j+1)
1n = argmin

u1n

{
λ|u1n|+ μ

2
(
√
ν1u1n − v

(j)
2n − η

(j)
2n )2

}
,

whose solution is given by the soft-thresholding rule:

u
(j+1)
1n = soft

{
(v

(j)
2n + η

(j)
2n )/

√
ν1, λ/(μν1)

}
, (21)

where soft{d, λ} = sign(d)max{|d|−λ, 0}, and u
(j+1)
1n , v(j)2n , and

η
(j)
2n are the nth component of u(j+1)

1 , v(j)
2 , ηηη(j)

2 , respectively.

3.3.2. Minimization with respect to v—Step 6 of ADMM
We handle the constrained problem in Step 6 using a Lagrangian
multiplier term ααα ∈ C

N1 :

(ααα(j+1),v(j+1)) = arg min
(ααα,v)

μ

2
‖Au

(j+1) − v − ηηη(j)‖22 +αααH
Bv,

whose solution can be found using (11) as [8]

ααα(j+1) =
μ

2
(Cu

(j+1) −Bηηη(j)), (22)

v
(j+1) = (Au

(j+1) − ηηη(j))− 1

μ
B

Tααα(j+1). (23)

From (23) and Step 7 of ADMM, we see that

ηηη(j) = − 1

μ
B

Tααα(j) ∀ j. (24)

Using (11), (22), and (24), we thus get the update rule

ααα(j+1) = ααα(j) +
μ

2
Cu

(j+1). (25)

Substituting (24) in (23), and using (25), we get that

v
(j+1) =

(
A− 1

2
B

T
C

)
u
(j+1). (26)

Since products with A, BT and C amount to simple linear oper-
ations, we propose to store the lower-dimensional vectors ααα(·) and
u
(·) in place of higher-dimensional vectors ηηη(·) and v

(·), respec-
tively, and employ (24)-(26) to find ηηη(·) and v

(·) for use in (18)-
(21). In summary, with the possible exception of Step 2, all steps in
ADMM are exact and can be implemented efficiently. Moreover, the
updates in (18)-(21) are independent of each other and may therefore
be computed in parallel.

4. EXPERIMENTAL RESULTS
We compared the proposed ADMM to NCG (which has been used
for CS-(p)MRI [3, 4]) and to the recently proposed MFISTA [9].
For the minimization step [9, Eq. 3.13] in MFISTA, we applied the
Chambolle-type algorithm developed in [10] as it does not require
“rounding” the “corners” of Ψ(x) unlike NCG [3, App. A]. We im-
plemented the following algorithms in MATLAB: MFISTA-NNN with
NNN iterations of [10, Eq. 6], NCG-NNN with NNN line-search iterations,
and ADMM. We conducted the experiments on a 8-core PC with
2.67 GHz Intel Xeon processors.

We quantified the speed of convergence to a solution of P0, i.e.,
the limit x(∞), by computing the normalized �2-distance between
x
(j) and x

(∞): ξ(j)=20 log10(‖x(j)−x
(∞)‖2/‖x(∞)‖2). We ob-

tained x
(∞) numerically by running 5000 iterations of MFISTA-

20. We evaluated ξ(j) as a function of algorithm run-time tj (time
elapsed from start until iteration j) because the algorithms have dif-
ferent computational loads per outer-iteration. We used the square-
root of sum of squares (SRSoS) of coil images (obtained by taking
inverse Fourier transform of the undersampled data after filling the
missing k-space samples with zeros) as our initial guess x(0) for all
algorithms. We found empirically that choosing μ, ν1 and ν2 such
that κ(Hμ), κ(Hν1ν2), κ(Hν2) ∈ [10, 36] generally provided good
convergence speeds for ADMM, so we simply used κ(Hμ) = 24,
κ(Hν1ν2) = 12, κ(Hν2) = min{0.9κ(SH

S), 12} in all our exper-
iments. We set u(0)

0 = Sx
(0), u(0)

2 = x
(0), u(0)

1 = Wu
(0)
2 , v(0) =
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Fig. 2. Plot of ξ(j) as a function time tj for NCG, MFISTA, and
ADMM for Slice 38 (top) and Slice 90 (bottom).

(A − 1
2
B

T
C)u(0), ααα(0) = μ

2
Cu

(0), and ηηη(0) = − 1
μ
B

Tααα(0) in
accordance with (2), (24)-(26) and executed the steps of ADMM
sequentially.

We used a 3D in-vivo human brain data-set acquired from a GE
3T scanner (TR = 25 ms, TE = 5.172 ms, and voxel-size = 1 ×
1.35× 1 mm3), with a 8-channel head-coil. The k-space data corre-
sponded to 256×144×128 uniformly-spaced samples in the kx and
ky (phase-encode plane), and kz (read-out) directions, respectively.
We used the iFFT-reconstruction of fully-sampled data collected si-
multaneously from a body-coil as a reference for quality. Slice 38
(along x-y direction) of the reference body-coil image-volume is
shown in Figure 1a. To estimate the sensitivity maps S associ-
ated with a slice, we separately optimized a quadratic-regularized
least-squares criterion that encouraged smooth maps that “closely”
fit a low-resolution body-coil image to low-resolution head-coil im-
ages, all obtained from iFFT-reconstruction of corresponding central
32 × 32 phase-encodes. We estimated the inverse of noise covari-
ance matrix from data collected during a dummy scan where only the
static magnetic-field (and no RF excitations) was applied and carried
out noise-decorrelation of data as described in [2, App. B].

We then performed regularized SENSE-reconstruction of 2-D
slices (x-y plane)—Slices 38 and 90—from undersampled phase-
encodes: For experiments with both slices, we applied the Poisson-
disk-sampling pattern with reduction factor � 6 in Figure 1b in the

phase-encode plane (as a means of conducting 3D CS-(p)MRI). We
obtained the reconstructions (x(∞)) corresponding to Slices 38 and
90 by running MFISTA-20. Figure 1e shows x

(∞) for Slice 38
where aliasing artifacts and noise have been suppressed considerably
compared to SRSoS image (Figure 1c) and conventional SENSE-
reconstruction [1] (Figure 1d) corresponding to a reduction factor of
6. We ran NCG-1, NCG-5, MFISTA-1, MFISTA-5, and ADMM
and computed ξ for experiments with both slices. Figure 2 plots ξ(j)
for the all algorithms as a function of tj . ADMM converges faster
than NCG and MFISTA in both cases.

5. SUMMARY & CONCLUSION
Based on the augmented Lagrangian (AL) framework, we developed
an alternating direction method of multipliers (ADMM) for regu-
larized SENSE-reconstruction: First, we introduced a set of con-
straint variables and converted the original unconstrained regular-
ized SENSE-reconstruction problem, P0, into an equivalent con-
strained task, P1, that is a “block”-variant of [8, Eq. (15)-(18)]. We
then applied the AL framework to P1 with an alternating direction
minimization scheme that decouples and simplifies the optimization
of the associated AL function with respect to these constraint vari-
ables. We demonstrated based on numerical experiments with real
MR data that ADMM converges to a solution of P0 faster than con-
ventional (NCG) and state-of-the-art (MFISTA) methods. The pro-
posed ADMM can be applied to Cartesian/nonCartesian pMRI, is
amenable to parallelization and is easy to implement.
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