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ABSTRACT

In susceptibility-weighted MRI, ignoring the magnetic field in-
homogeneity can lead to severe reconstruction artifacts. Correct-
ing for the effects of magnetic field inhomogeneity requires accurate
fieldmaps. Especially in functional MRI, dynamic updates are de-
sirable, since the fieldmap may change in time. Also, susceptibility
effects that induce field inhomogeneity often have non-zero through-
plane gradients, which, if uncorrected, can cause signal loss in the
reconstructed images. Most image reconstruction methods that com-
pensate for field inhomogeneity, even using dynamic fieldmap up-
dates, ignore through-plane fieldmap gradients. This work proposes
a computationally efficient, model based iterative method for joint
reconstruction of image and dynamic fieldmap that accounts for the
through-plane gradients of the field inhomogeneity. The proposed
method allows for efficient reconstruction by applying fast approxi-
mations that allow the use of the conjugate gradient algorithm along
with FFTs.

Index Terms— Through-plane gradients, dynamic field map es-
timation, iterative reconstruction.

1. INTRODUCTION

In functional MRI a series of dynamic images is reconstructed and
to satisfy the need for high temporal resolution, fast single-shot ac-
quisitions are commonly used. Also these acquisition usually have
late echo-times to ensure good BOLD contrast. These characteris-
tics of susceptibility-weighted MR imaging lead to increased sensi-
tivity to magnetic field inhomogeneities. Correcting for these effects
requires accurate inhomogeneity fieldmaps and since the fieldmap
may change in time, dynamic updates are desirable. This motivated
the development of methods that can jointly reconstruct undistorted
images and undistorted dynamic fieldmaps [1], [2] and [3].

Most methods correcting for field inhomogeneity, even the
model-based iterative ones, treat the inhomogeneity within each
voxel as being a constant. However, susceptibility effects usually
cause nonzero through-plane gradients that lead to spin dephasing
across the slice within each voxel. Ignoring through-plane gradi-
ents can cause signal loss in the reconstructed images, especially in
functional MR imaging where acquisitions with long readouts and
late echo-times are used. To correct for the through-plane gradient
effects, a fast, iterative reconstruction method is proposed in [4].
That method assumed that the through-plane gradients are known,
so it cannot handle dynamic fieldmap changes.

Motivated by [2], this work proposes a computationally efficient,
model based, iterative method that jointly reconstructs images and
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dynamic fieldmaps, accounting for through-plane gradient effects.
The proposed algorithm uses the signal model presented in [4] and
applies the fast approximations introduced in [5]. Finally to improve
the efficiency of the reconstruction algorithm, similarly to [6], a lin-
earization technique for fieldmap estimation is used, that allows the
use of the CG algorithm.

2. THEORY

To correct for through-plane gradient effects, we need a signal model
that accounts for the slice profile and the through plane gradients of
the field inhomogeneity. Assuming a total of J slices and parallel
imaging with nc coils, a reasonable model for the signal in slice
selective MRI is:

sj,i(t) =

∫∫∫
h(z − zj)ci(x, y, z)f(x, y, z)e

−iω(x,y,z)t

e−i2π(kX (t)x+kY (t)y)dxdydz, (1)

for i = 1, . . . , nc and j = 1, . . . , J,

where h(z) is the (known) slice-selection profile, zj is the ax-
ial center of the jth slice, f(x, y, z) is the (unknown) object,
ω(x, y, z) is the fieldmap, ci(x, y, z) is the coil sensitivity and

k(t) � (kX(t), kY (t)) is the k-space trajectory. We assume that the
object f and the fieldmap ω are static during a single-shot readout.

The model in (1) is equivalent to that proposed in [4] and using
the same assumptions and approximations introduced therein, the
discretized signal equation is expressed as:

sj,i(t) =Φ(k(t))

N−1∑
n=0

H(gj,nt)cj,i,nfj,ne
−iωj,nte−i2πk(t)·rn ,

(2)

where Φ(k(t)) is the Fourier transform of the basis function, H(·)
is the Fourier transform of the slice profile and g is the through-
plane gradient, determined from the fieldmap using central differ-

ences, i.e., gj,n � ωj+1,n−ωj−1,n

4πΔz
.

The model is non-linear in ω (2). To avoid using a computation-
ally demanding GD method as in [1], we follow [6] and linearize the
signal equation by approximating the term H(gjt)e

−iωjt using first-
order Taylor series expansion around a carefully chosen reference ω̌.
The suitability of the linearization depends on having a reasonable
initial fieldmap estimate ω̌; typically ω̌ is obtained from a pre-scan
or from the previous dynamic frame. This leads to the following
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approximation:

H(gjt)e
−iωjt ≈H(ǧjt)e

−iω̌jt − itH(ǧjt)e
−iω̌jt(ωj − ω̌j)

− t

4πΔz
H ′(ǧjt)e

−iω̌jt(ωj−1 − ω̌j−1)

+
t

4πΔz
H ′(ǧjt)e

−iω̌jt(ωj+1 − ω̌j+1), (3)

where H ′(u) � dH(u)
du

and ǧj � ω̌j+1,n−ω̌j−1,n

4πΔz
.

MRI measurements are noisy samples of the signal. Using the
approximation (3) in the signal equation (2), the measurement vec-
tors yj,i for each slice and each coil can be expressed in matrix vector
form as:

yj,i =A(ω̌j , ǧj , cj,i)fj +B(ω̌j , ǧj , fj , cj,i)(ωj − ω̌j)

+D(ω̌j , ǧj , fj , cj,i)(ωj−1 − ω̌j−1)

−D(ω̌j , ǧj , fj , cj,i)(ωj+1 − ω̌j+1) + εj,i, (4)

where fj � (fj,1, . . . , fj,N ), ωj � (ωj,1, . . . , ωj,N ) and cj,i �
(cj,i,1, . . . , cj,i,N ) are the discretized object, fieldmap and sensitiv-
ity map respectively, and the elements of the M×N system matrices
A(ω̌j , ǧj , cj,i), B(ω̌j , ǧj , fj , cj,i) and D(ω̌j , ǧj , fj , cj,i) are:

a(ω̌j , ǧj , cj,i)m,n =H(ǧj,ntm)w(ω̌j , ǧj , cj,i)m,n,

b(ω̌j , ǧj , fj , cj,i)m,n =− itma(ω̌j , ǧj , cj,i)m,nfj,n, (5)

d(ω̌j , ǧj , fj , cj,i)m,n =− tm
4πΔz

H ′(ǧjtm)w(ω̌j , ǧj , cj,i)m,nfj,n,

w(ω̌j , ǧj , cj,i)m,n �Φ(k(tm))e−iω̌j,ntme−i2πk(tm)·rncj,i,n.

When one ignores through-plane gradients (assuming gj = 0),
the measurement model in (4) is equivalent to the approach described
in [2] and the joint reconstruction problem can be solved with the fast
iterative algorithm described therein. The presence of the H(ǧjt)
and H ′(ǧjt) terms in (5) prohibits the direct application of those
fast methods. To solve this problem, we used the following approx-
imations based on the histogram PCA basis expansion approach de-
scribed in [5]:

H(ǧj,ntm)e−iω̌j,ntm ≈
L∑

l=1

pj,m,lqj,l,n,

H ′(ǧj,ntm)e−iω̌j,ntm ≈
L∑

l=1

uj,m,lvj,l,n. (6)

Using the approximation in (6) into the expressions in (5), allows the
evaluation of the forward model or its adjoint using L NUFFT calls.

The measurement vector for each slice yj is given by stacking
the measurement vectors yj,i for each coil and the overall ncM ×N
system matrices are given by stacking the system matrices for each
coil. Hence, the overall measurement model for each slice in matrix-
vector form can be written as:

yj =AC(ω̌j , ǧj)fj +BC(ω̌j , ǧj , fj)(ωj − ω̌j)

+DC(ω̌j , ǧj , fj)(ωj−1 − ω̌j−1)

−DC(ω̌j , ǧj , fj)(ωj+1 − ω̌j+1) + εj . (7)

In (7) there is coupling between adjacent slices of the fieldmap. It
should be beneficial to account for this coupling when reconstruct-
ing, by estimating all the slices at once and treating the problem as
a 3D reconstruction instead of a sequential 2D reconstruction. With
this in mind, we write the measurement model as:

y =AJ(ω̌)f +BJ(ω̌, f)(ω − ω̌) + ε, (8)

where the vectors y, f and ω are created by stacking the individual
slice vectors yj , fj and ωj respectively and the ncJM × JN matri-
ces AJ and BJ are defined as follows:1

AJ =

⎡
⎢⎢⎢⎢⎣

AC,1 0 · · · 0

0 AC,2

. . .
...

...
. . .

. . . 0
0 · · · 0 AC,J

⎤
⎥⎥⎥⎥⎦ (9)

BJ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B1 + 2D1 −2D1 0 · · · 0

D2 B2 −D2

. . .
...

0
. . .

. . .
. . . 0

...
. . . DJ−1 BJ−1 −DJ−1

0 · · · 0 2DJ BJ − 2DJ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

To estimate the image and fieldmap accounting for noise statis-
tics, we minimize the following regularized least squares cost func-
tion:

Ψ(f, ω) =
1

2
‖y −AJ(ω̌)f −BJ(ω̌, f)(ω − ω̌)‖2

+ β1R1(f) + β2R2(ω), (10)

where R1(f) and R2(ω) are regularization terms. The fieldmap is
smooth, both in the in-plane and through-plane directions, so we use
a quadratic regularization penalty R2(ω) � 1

2
‖C2ω‖2, where C2 is

a matrix of second-order differences along all three directions (x, y,
z). For the image f , an edge-preserving regularizer could be used,
but since fMRI images are often smoothed for data analysis, we also
used a quadratic regularizer R1(f) � 1

2
‖C1f‖2 here, where C1 is a

matrix of second-order differences along the x and y directions.

We minimize the cost function (10) by alternating between up-
dating the image and the fieldmap. In each step of the minimization
process a new update is found for the image and then for the fieldmap
and the process is repeated until convergence. For the kth step in the
alternating minimization scheme, the image update is:

f̂k =argmin
f

1

2

∥∥∥y −AJ(ω̂
k−1)f

∥∥∥2

+ β1R(f) (11)

and the fieldmap update uses the most recent image:

ω̂k =argmin
ω

1

2

∥∥∥ỹk −BJ(ω̂
k−1, f̂k)ω

∥∥∥2

+ β2R(ω), (12)

where

ỹk �y −AJ(ω̂
k−1)f̂k +BJ(ω̂

k−1, f̂k)ω̂k−1.

In both (11) and (12) the minimizers are found using the CG-Toeplitz
method [5] which is reasonably computationally efficient. For EPI
trajectories standard FFTs can be used instead of the NUFFT.

3. MATERIALS AND METHODS

The proposed method is applicable with any k-space trajectory, al-
though the results depend on the trajectory choice. As proposed
in [2], the choice of an “interleaved”, single-shot EPI trajectory,

1In (9), the dependency of AC , BC and DC on ωj , gj and fj is only
expressed through the subscript j = 1, . . . , J due to lack of space.
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(a) True image f [arbitrary units]

(b) True fieldmap ω [Hz]

(c) True gradient map g [Hz/cm]

Fig. 1. True image, fieldmap and gradient map for 4 out of 20 slices. Slices
3, 8, 13 and 18 are shown from left to right.

along with sensitivity encoding, allows for successful joint recon-
struction of image and fieldmap. Thus, we used this type of trajec-
tory to assess the proposed method. The trajectory parameters are
FOV = 24 cm, matrix size = 64 × 64, readout time = 46 ms and
two echo-times at TE1 = 18 ms and TE2 = 42 ms. For parallel
imaging in simulations, a four coil setting with smooth B1 maps was
used.

For the simulation experiments human brain data (both images
and fieldmaps) were used, acquired with the method described in [7].
The scans were 64 × 64 by 20 slices, with 24 cm transaxial FOV
and 2 cm axial FOV, resulting in slice spacing of 1 mm. For the
slice selection, a rectangular profile was used with 4 mm width. The
magnitude images and the corresponding fieldmaps of 4 slices are
shown in Figs. 1(a) and 1(b). The fieldmap gradients, shown in Fig.
1(c), were estimated from the fieldmaps using central differences.

The experiments were performed with simulated data, created
using the exact system model (2), to which noise was added to make
a 30dB and 50dB data SNR. We used an iteratively reconstructed im-
age, uncorrected for field inhomogeneities, as the initial estimate f0,
and we created the initial estimate ω0 with the standard phase dif-
ference method from two images using iterative CG reconstruction
uncorrected for field inhomogeneities. The images were acquired
with 2-shot EPI trajectories, at 40dB data SNR. Each shot of the EPI
had a 22.5 ms readout time and the echo-times were TE1 = 12.3
ms for the first acquisition and TE2 = 14.3 ms for the second, re-
sulting in a ΔTE = 2 ms echo-time difference. The resulting dis-
torted fieldmaps were smoothed with a Gaussian filter to suppress
the noise. The RMS and maximum error of the initial fieldmap can
be seen in Table 1. As seen in the results section, the joint recon-
struction method works well when the initial fieldmap is within 10
Hz from the true fieldmap, although a more thorough investigation
of these limits is required. Nevertheless, the expected variations of
the fieldmap in an fMRI study, as presented in [1], are well within
this range.

To further evaluate the quality of the joint reconstruction, an or-
acle image estimate was reconstructed with our method using the
true fieldmap (Fig. 2(a)) and an oracle fieldmap estimate was recon-
structed with our method using the true image (Fig. 2(b)). These
oracle estimates provide an upper bound on the accuracy of the pro-
posed joint reconstruction method.

(a) “Oracle” image f̂ [arbitrary units]

(b) “Oracle” fieldmap ω̂ [Hz]

(c) “Oracle” gradient map ĝ [Hz/cm]

Fig. 2. “Oracle” image, fieldmap and gradient map for 4 out of 20 slices.
Slices 3, 8, 13 and 18 are shown from left to right.

The regularization parameters β1 and β2 in (11) and (12) were
chosen to achieve a specific spatial resolution [8]. For the image we
chose β1 so that the FWHM of the PSF was 1.1 pixels at 50dB SNR
and 1.2 pixels at 30dB SNR. For the fieldmap we chose β2 so that
the FWHM of the PSF was 1.2 voxels (since 3D regularization is
applied) for both SNRs.

To jointly estimate the image and fieldmap the we alternated 20
times between updating the image and then updating the fieldmap. In
each update we used 15 iterations of the CG method. The necessary
matrix-vector multiplications in each CG iteration were performed
with the Toeplitz, histogram PCA method of [5], with L = 9 basis
functions. The CG-Toeplitz method requires updates of the basis and
coefficients in each alternating step, which can be a computational
bottleneck, since calculating a new basis requires to perform a SVD.
To alleviate this problem, the basis functions were precalculated at
the beginning of the study and only the coefficients were updated
in each alteration. Given reasonable initial estimates, this is a valid
simplification, because the nature of the image and the fieldmap does
not change dramatically with each update. The computational cost
per iteration is in the order of O(N logN) and it requires roughly
three times more computations per iteration compared to the method
in [6].

4. SIMULATION RESULTS

Fig. 3(a) shows the reconstructed image without correction for field
inhomogeneities. Because of the fieldmap and gradient strength
and the long readout time, there are significant geometric artifacts
along with signal loss. Fig. 3(b) shows the reconstructed image
when field inhomogeneities were corrected using the true fieldmap,
but the through-plane gradients were ignored. In this reconstruction
there are no geometric artifacts caused by field inhomogeneity, but
there is significant signal loss due to the fieldmap gradients. Fig.
3(c) shows the reconstructed image with correction for field inho-
mogeneities and through-plane gradients, using the initial, standard
fieldmap estimate (Fig. 3(d)) and the resulting gradients. In this case
the artifacts are reduced but not completely eliminated, there is also
some residual signal loss, and the reconstruction quality is not close
to the one achieved in the oracle reconstruction (Fig. 2(a)), where
the true fieldmaps and through-plane gradients are used. This is
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(a) Uncorrected image. (b) Reconstructed image ig-
noring fieldmap gradients.

(c) Reconstructed image us-
ing initial fieldmap.

(d) Initial fieldmap estimate.

Fig. 3. Image and fieldmap reconstructions for one slice (slice 3 of se-
quence).

(a) Jointly reconstructed image f̂ [arbitrary units]

(b) Jointly reconstructed fieldmap ω̂ [Hz]

(c) Jointly reconstructed gradient map ĝ [Hz/cm]

Fig. 4. Jointly reconstructed image, fieldmap and gradient map for 4 out of
20 slices. Slices 3, 8, 13 and 18 are shown from left to right.

also evident in terms of normalized RMS error, as seen in Table
1. Figs. 4(a), 4(b) and 4(c) show the jointly reconstructed images,
fieldmaps and through-plane gradient maps that were reconstructed
with our proposed method. In this case there are significantly re-
duced inhomogeneity artifacts and almost negligible signal loss in
the reconstructed images; both the images, fieldmaps and gradients
are of comparable quality to the oracle reconstructions (Figs. 2(a),
2(b) and 2(c)). This can also be seen in terms of RMS error in Table
1. As seen from these preliminary simulation results, the proposed
method seems promising in performing efficient joint reconstruction
of image and dynamic fieldmap in the presence of through-plane
gradients.

5. DISCUSSION

This paper proposed an efficient method for joint estimation of dy-
namic images and fieldmaps compensating for through-plane gra-
dient effects. The preliminary simulation results showed that high
quality reconstruction can be achieved with this method, by using
a more accurate signal model and fast approximations. Thus, this

30dB 50dB 30dB 50dB

Reconstructed images NRMS in % Max. Err. in %
uncorrected 49.4 49.1 99.7 99.9

using initial fieldmap 15.4 14.5 98.3 111.0

true fieldmap, no gradients 20.2 19.0 98.9 97.1

oracle (using true fieldmap) 9.1 4.9 41.4 29.5

joint estimation 10.2 7.3 67.6 74.9

Reconstructed fieldmaps RMS in Hz Max. Err. in Hz
standard estimate 3.26 3.26 15.94 15.94

oracle (using true image) 0.27 0.24 2.36 2.29

joint estimation 1.33 1.40 11.78 13.86

Reconstructed gradients RMS in Hz/cm Max. Err. in Hz/cm
standard estimate 17.01 17.01 150.32 150.32

oracle (using true image) 1.38 1.08 14.34 13.41

joint estimation 3.56 3.69 49.55 59.10

Table 1. Comparative table of RMS error of reconstruction methods, for all
20 slices.

method can be potentially useful in functional MRI, where dynamic
fieldmap updates are desirable and through-plane gradient effects
can cause significant image quality degradation. A disadvantage of
this method, as in [2], is that non-standard single-shot trajectories
seem to be required to achieve good reconstruction.

As a future step it would be interesting to investigate the benefits,
in terms of quality of the reconstructed images, from incorporating
in-plane fieldmap gradients in the signal model. Also, in this study, a
3D regularizer was used for fieldmap reconstruction, with promising
results in terms of image quality. However, a more thorough study of
its effects on the reconstructed images is required. Finally, to further
evaluate the proposed method it is necessary to perform experiments
using real data from phantom and human studies.
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