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Abstract—The primary drawback of statistical image recon-
struction methods for X-ray CT is the computation time required
by iterative algorithms. Iterative coordinate descent (ICD) algo-
rithms converge in relatively few iterations but are challenging to
parallelize due to their sequential updates. Conjugate gradient
(CG) methods and ordered-subsets (OS) algorithms update all
pixels simultaneously, which facilitates parallelization, but these
algorithms require many more iterations to converge than ICD.
This paper proposes a block coordinate descent algorithm for
helical and axial cone-beam X-ray CT image reconstruction in
which a group of voxels are updated simultaneously. We focus
on updating all the voxels within one axial “column” of the
3D image simultaneously, so we refer to this approach as the
axial block coordinate descent (ABCD) algorithm. Because this
approach updates many voxels simultaneously (e.g., 64 in an
axial scan and hundreds in a helical scan), it is reasonably
well suited to parallel processing. At the same time, because
the voxels within an axial column are relatively weakly coupled,
which is why we selected axial blocks, the algorithm converges
fairly quickly. In particular, the simultaneous update of one axial
column requires inverting a banded matrix which can be done
quickly (ABCD-BAND). An alternative version of the algorithm
uses a simpler separable quadratic surrogate for the axial block
(ABCD-SQS). Preliminary simulation results illustrate that the
ABCD algorithms decrease a regularized weighted least-squares
cost function much faster than a traditional separable quadratic
surrogate (SQS) method that updates all pixels simultaneously.
The proposed ABCD algorithms exhibit about the same decrease
per iteration as the ICD method, while appearing much more
amenable to parallelization.

I. INTRODUCTION

This paper focuses on statistical image reconstruction meth-

ods where one reconstructs the N voxels of the unknown

3D image x = (x1, . . . , xN ) by minimizing a regularized

weighted least-squares (WLS) cost function:

x̂ = arg min
x

Ψ(x), Ψ(x) =

M∑

i=1

wi

2
(yi − [Ax]i)

2 + R(x),

where y denotes the X-ray CT projection data, wi denotes

the statistical weighting associated with the ith ray, for i =
1, . . . ,M , M is the number of rays, A is the M ×N system

matrix and R(x) is an edge-preserving regularizer that controls

noise while attempting to preserve spatial resolution. The for-

ward projection operation is [Ax]i =
∑N

j=1 aijxj . Although

we focus here on a WLS data-fit term, the principles generalize

readily to other statistical models like the transmission Poisson

log-likelihood [1].
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For nonquadratic regularization methods finding the mini-

mizer x̂ requires an iterative algorithm. The primary drawback

of statistical image reconstruction methods for X-ray CT is

the computation time of such algorithms, particularly the

forward and back-projection operations. Iterative coordinate

descent (ICD) algorithms [2], [3] converge in relatively few

iterations but are challenging to parallelize due to their se-

quential updates. Conjugate gradient (CG) methods [4] and

ordered-subsets (OS) algorithms based on separable quadratic

surrogates (SQS) [5], [6] update all pixels simultaneously,

which facilitates parallelization, but these algorithms require

many more iterations to converge than ICD [7].

Considering that modern computing architectures are based

on parallel processing, while also considering the convergence

rate properties of ICD and CG/OS, it seems unlikely that the

“optimal” practical algorithm will be at either the extreme of

updating only one voxel at a time or at the other extreme of

updating all voxels simultaneously. Instead, it is plausible that

the best compromise will update a group of voxels (but not

all voxels) simultaneously, and then cycle through all groups

in some order. (It is likely that the choice of order will be

important for achieving the fastest possible convergence [8]

but we do not investigate that here.) Such “grouped” or “block”

coordinate descent algorithms have been used in statistical

estimation for over two decades [9], [10] and have also been

applied to tomographic image reconstruction [11]–[14].

In [13], a group of pixels (in 2D) was selected (based

on checker-board patterns) for simultaneous update. Then

optimization transfer principles were applied to develop a

separable surrogate function for that group of pixels, and

then all pixels in that group were updated simultaneously

by minimizing the surrogate function. The pixels within a

transaxial slice are relatively strongly coupled, so the surrogate

functions have undesirably high curvatures, so the accelera-

tions provided in 2D by the methods in [13] were somewhat

modest. The pixels within a group were selected to be distant

from each other, rather than adjacent neighbors, to try to

minimize the coupling-related curvatures, but still there was

coupling that prevented dramatic acceleration. Benson et al.

[14] took a different approach that did not use optimization

transfer, thereby avoiding these high curvatures. They used

k × k blocks of neighboring pixels (in the x−y plane that

are highly coupled) and updated all k2 pixels within that

block simultaneously by inverting a k2 ×k2 matrix. They then

sequentially stepped along the axial direction, updating the

same k × k block for each slice. This approach reduced the

number of iterations but may increase the work per iteration

substantially because the k2 × k2 matrices are dense.
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In this paper we propose a block coordinate descent algo-

rithm for 3D helical and axial cone-beam X-ray CT image

reconstruction that is adapted specifically to the geometry

of standard CT scanners (both multi-slice and flat panel) in

which one 2D detector axis is aligned with the rotation axis.

(The proposed approach may not be ideal for C-arm systems

with arbitrary source trajectories.) We focus on updating all

the voxels within one axial “column” of the image volume

simultaneously, so we refer to this approach as the axial block

coordinate descent (ABCD) algorithm. Because this approach

simultaneously updates many voxels (e.g., 64 in an axial scan

and hundreds in a helical scan), it is reasonably well suited

to parallel processing. At the same time, because the voxels

within an axial column are relatively weakly coupled, which is

why we selected axial blocks, the algorithm converges fairly

quickly. In particular, the simultaneous update of one axial

column requires inverting a banded matrix, which can be done

quickly using a well-known simple algorithm that is linear in

the number of unknowns [15]. Unlike previous block-based

algorithms for CT reconstruction that are applicable to an

arbitrary system matrix A, the ABCD method is designed to

work hand-in-hand with the separable footprint (SF) projector

[16]. Although ABCD may be adapted to other forward

projection methods, the axial/transaxial separability of the SF

projector facilitates the implementation of ABCD in a way

that is very efficient and amenable to parallel processing. Pre-

liminary simulation results illustrate that the ABCD algorithm

converges at a rate per iteration comparable to ICD, and both

converge much faster than conventional optimization transfer

methods based on separable quadratic surrogates [6], [17].

II. THEORY

We first review the general framework for block coor-

dinate descent approaches, of which ICD and ABCD are

special cases. Partition the parameter vector x into K sets:

x = (x1, . . . ,xK), where 1 ≤ K ≤ N . (In general the

sets do not have to be disjoint but it simplifies explanation

and implementation to focus on disjoint sets.) The idea is

to update each block of voxels xk in turn, using the most

recent estimates of all other blocks. Specifically, within the

nth iteration, we update the kth block by minimizing the cost

function Ψ(x) with respect to xk as follows:

x(n+1)

k = argmin
xk

Ψ
(n)
k (xk)

Ψ
(n)
k (xk) , Ψ

(
x(n+1)

1 , . . . ,x(n+1)

k−1 ,xk,x
(n)

k+1, . . . ,x
(n)

K

)
.

If each block consists of a single pixel, then this approach

reduces to the standard ICD algorithm [2], [3].

When nonquadratic regularization is used, there is no

closed-form solution for the minimizer x(n+1)

k , so the block

minimization step (argmin above) would itself require an

inner iteration. This may be undesirable, so an alternative is

to apply optimization transfer to derive a surrogate function

φ(n)

k for Ψ
(n)
k and minimize the surrogate instead:

x(n+1)

k = arg min
xk

φ(n)

k (xk) .

Provided the surrogate function satisfies the usual majorization

conditions of optimization transfer [1], this type of algorithm is

guaranteed to decrease the original cost function Ψ(x) mono-

tonically every update, which in turn ensures convergence in

the usual case that mild regularity conditions hold [18].

In [13], separable quadratic surrogate (SQS) functions were

used of the form

φ(n)

k (xk) = Ψ
(n)
k

(
x(n)

k

)
+∇xk

Ψ
(n)
k

(
x(n)

k

)
(xk − x(n)

k )

+
1

2
(xk − x(n)

k )′D(n)
k (xk − x(n)

k ),

where D
(n)
k is a diagonal “curvature” matrix. This SQS

approach leads to the following simple update equation:

x(n+1)

k = x(n)

k −
[
D

(n)
k

]−1

∇xk
Ψ

(n)
k

(
x(n)

k

)
, (1)

where inversion of D is trivial because it is diagonal due to

the separability φ(n)

k . In fact, in the extreme case where all

voxels are in a single group (K = 1), this iteration is simply

the conventional SQS approach [6] that is known to converge

very slowly. When “too many” strongly coupled voxels are in

the same group, the curvatures (elements of D) become large,

leading to small values for its inverse and hence small step

sizes and slow convergence.

The approach of Benson et al. [14] used the quadratic

surrogate approach of Yu et al. [19], which has its roots

in Huber’s algorithm [20, p. 184], but they did not use a

separable surrogate function. This leads to an algorithm of

the form (1) except D is replaced by a non-diagonal Hessian

matrix H
(n)
k , ∇2 φ(n)

k . For the transaxial blocks chosen in

[14], this Hessian matrix H
(n)
k is dense (all elements nonzero

in general), thus requiring more effort to invert.

The key idea proposed in this paper is to use axial groups of

voxels instead of the transaxial blocks that were considered in

previous work [13], [14]. The rationale for this choice is that

there is far less “coupling” between neighboring voxels in the

axial direction than between neighboring voxels in the same

slice in the “cylindrical” geometries of helical and axial CT

scans. (We define the “coupling” between voxel j and voxel

j′ as
∑M

i=1 wiaijaij′ , which, for j 6= j, essentially is one of

the off-diagonal elements of the Hessian matrix H
(n)
k .)

In particular, for a typical multi-slice CT geometry where

the slice spacing is matched to the detector row spacing (scaled

by the system magnification at isocenter), we have shown that,

for the SF projector [16] and also for the distance-driven (DD)

projector [21], the Hessian matrix is pentadiagonal for all axial

blocks within a standard 70 cm field of view. With this choice

of blocks, the resulting axial block coordinate descent (ABCD)

algorithm has the form

x(n+1)

k = x(n)

k −
[
T

(n)
k

]−1

∇xk
Ψ

(n)
k

(
x(n)

k

)
, (2)

where T
(n)
k is the banded Hessian of the (nonseparable)

quadratic surrogate function φ(n)

k . For a reconstruction problem

with Nz slices, T
(n)
k is Nz ×Nz matrix, and one can solve a

system of equations T
(n)
k u = v in O(Nz) operations easily

[15]. We refer to (2) as the ABCD-BAND algorithm because

it uses the “inverse” of a banded matrix. Fig. 1 shows part of
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a typical Hessian for a helical CT problem with Nz = 176
slices, for the unweighted case W = I. In this case, there

are 3 dominant bands and the next two bands have negligible

values.
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Fig. 1. Part of a banded Hessian matrix for Nz voxels grouped axially.

If one uses an unconventional relationship between the

slice thickness and the detector row spacing, or if one uses

a more complicated forward projector for which the axial

footprint is larger than the models used in the SF and DD

projectors, then it is possible that the Hessian matrix of the

quadratic surrogate function could have more than 5 diagonals.

Nevertheless, the Hessian for an axial group will always be

banded rather than dense for any reasonable system model.

In such cases there are several possible approaches that one

can take. One option is to use a general approach to inverting

banded matrices [15, Ch. 5]; these methods are also O(Nz)
but with a larger constant. We refer to these as ABCD-BAND

algorithms. Another option is to derivate a separable quadratic

surrogate (SQS) for the axial group of voxels, leading to an

update of the form (1). Because a typical axial group has

lower coupling than a typical transaxial group, the elements

of the diagonal Hessian D
(n)
k are smaller, leading to faster

convergence. We refer to this as the ABCD-SQS algorithm.

Yet another option is to derive a quadratic surrogate function

with a tridiagonal Hessian for the general banded case. We

postpone this more complicated possibility for future work.

The typical edge-preserving regularizers used for 3D CT

[3] use the immediately neighboring voxels in all three

directions (26 neighbors per voxel). Specifically, R(x) =∑N
j=1

∑
k∈Nj

ψ(xj − xk) where Nj denotes the 26 neighbors

of the jth voxel and ψ is a potential function such as the

Huber function. Because each voxel in an axial “column” is

coupled via the regularizer to the voxel immediately above

and immediately below, the Hessian matrix for the regularizer

is exactly tridiagonal regardless of the voxel size or projection

geometry. This is a further benefit of using axial groups and

the ABCD-BAND approach.

So far we have focused on the issues associated with

designing and inverting the Hessian of the quadratic surrogate

function. Equally important to the overall efficiency of the al-

gorithm is how one computes the gradient of the cost function

∇xk
Ψ

(n)
k that is required by all of the above methods. Let Ak

denote the sub-matrix of A with columns corresponding to the

group xk. Then the data-fit term gradient is simply

∇xk
Ψ

(n)
k = A′

kW r+∇xk
R, (3)

where r = Axcurrent − y is the sinogram residual vector

that is always kept as a state vector in ICD and block CD

type algorithms [2]. Specifically, we start the algorithm by

initializing the residual vector r = Ax(0) − y and then after

updating block xk using x(n+1)

k = x(n)

k + d(n)

k we update the

residual using

r += Akd
(n)

k . (4)

So this update step requires multiplication by Ak and the

gradient step (3) requires multiplication by its transpose A′
k.

Space constraints prohibit a complete explanation, but the

choice of an axial group is particularly well suited to the SF

projector [16] because that method uses separable footprints

in the transaxial and axial directions. For the back-projection

step, inner-products between the transaxial footprint and the

projection data can be computed with parallelism across views

and across all detector rows. There is also opportunity for

SIMD computations across rows. (In contrast ICD can exploit

parallelism across views only, because a single voxel affects

only a few rows of any given projection view.) After com-

puting these inner products, the effect of the axial footprint

is a simple 1D operation along z for each view, which we

can also parallelize across views. There is similar opportunity

for parallelism across both views and rows for the forward

projection step (4).

III. SIMULATION RESULTS

We implemented the ABCD-BAND and ABCD-SQS algo-

rithms in Matlab to compare their convergence rates. Because

Matlab is a slow interpreted language, our comparisons were

limited to small 3D image sizes. We also implemented the

conventional SQS algorithm and the ICD algorithm for com-

parison. None of these implementations are optimized in terms

of run time. Our focus here was on how fast the cost function

Ψ(x) decreases each iteration. It is well understood that the

computation time per iteration will be quite different for the

various algorithms due to their various levels of parallelism.

We expect that the compute time per iteration for well-

parallelized implementations will obey

SQS < ABCD-SQS < ABCD-BAND < ICD (5)

On the other hand, rate of decrease of the cost Ψ per iteration

will likely also roughly follow (5), although ABCD-BAND

might converge faster per iteration than ICD.

Fig. 2 shows one representative slice of the small 3D images

that were used in this preliminary study, along with the images

reconstructed by FDK [22], [23] and by the four iterative

algorithms listed in (5) after 15 iterations. The SQS algorithm

converges very slowly, and has not come close to reaching the

minimizer x̂ after 15 iterations. (If run more iterations it will

eventually converge.) The ICD and ABCD algorithms reached

nearly the same image within 15 iterations. Fig. 3 shows the

cost function value Ψ(x(n)) as a function of iteration for the
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four algorithms. The undesirably slow convergence of SQS

is evident. In this small example, the other three algorithms

appeared to reduce the cost frunction Ψ at nearly the same

rate. We also observed similar trends for another case with

a 64 × 64 × 16 image volume. Hopefully this behavior will

persist when we investigate realistic sized images with a more

optimized implementation.
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Fig. 2. Reconstructed images after 15 iterations for a small 3D problem.
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versus iteration n for four algorithms.

IV. SUMMARY

We have proposed ABCD algorithms based on using block

coordinate descent with blocks formed from axial “columns”

of voxels for helical and axial cone-beam CT. The methods

currently are implemented in Matlab to prove the principle

of the update. The next step is to implement the method in

C and exploit the abundant parallelism and then compare the

convergence rate and compute efficiency with ICD [3] and

with SQS-OS [6] algorithms using multi-core systems.
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