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ABSTRACT

Patient motion degrades image quality in medical imaging.
Gating can reduce motion artifacts by using part of the ac-
quired data, but can increase noise. Motion-compensated im-
age reconstruction (MCIR) utilizes all collected data with mo-
tion information to reduce motion artifacts and noise.

Interactions between Poisson log-likelihood and quadratic
regularizers lead to nonuniform and anisotropic spatial res-
olution in the static case. These undesirable problems can
become worse in MCIR due to local motion. We previously
compensated for local volume changes in MCIR to pro-
vide approximately uniform spatial resolution, but achieved
isotropic resolution only for the static case.

This paper proposes a quadratic spatial regularizer design
that achieves nearly uniform and isotropic spatial resolution
in MCIR. We consider “analytical approach” to regularization
design that was developed for static image reconstruction and
extend it to MCIR methods based on a general parametric
motion model. Our proposed regularizer can compensate not
only for the effects of interactions between the Poisson log-
likelihood and the spatial regularizer but also for the effects
of nonrigid motion. A 2D PET simulation demonstrates the
theoretical results.

1. INTRODUCTION

Motion is an important problem in many medical imaging
modalities such as PET, SPECT, and CT. Due to their in-
nate acquisition time (and dose) limitations, there are trade-
offs between image noise (SNR) and motion artifacts. Gat-
ing methods can reduce motion artifacts, but they also reduce
SNR or decrease radiation dose efficiency by discarding po-
tentially useful data.

Motion-compensated image reconstruction (MCIR) meth-
ods attempt to use all collected data and motion information
to improve image quality. Many such methods use nonrigid
motion models that can be estimated separately [1–3], or
simultaneously [4, 5]. Such methods can improve SNR and
reduce motion artifacts.
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Interactions between the log-likelihood for Poisson mea-
surements and conventional quadratic regularizers leads to
nonuniform and anisotropic spatial resolution [6]. There are
methods for designing quadratic regularizers that can achieve
uniform and isotropic spatial resolution in the static case [7,
8]. Resolution non-uniformity and anisotropy problems can
worsen in MCIR due to local motion. There are a few meth-
ods for achieving approximately uniform spatial resolution in
MCIR methods [9, 10], but resolution anisotropy has not be
addressed previously.

This paper proposes a method for 2D quadratic spatial
regularization design that provides approximately uniform
and isotropic spatial resolution in MCIR. We consider the
“analytical approach” to isotropic spatial regularization de-
sign that was developed for static imaging [8] and extend
it to MCIR methods based on a general parametric motion
model. Our proposed regularizer can compensate not only for
the effects of interactions between the Poisson log-likelihood
and the spatial regularizer but also for the effects of nonrigid
motions. A 2D PET simulation with affine motion illustrates
the theory.

2. METHOD

2.1. Measurement model

Let fm, m = 1, . . . , M denote the object in the mth frame in
a gated study. We assume the following measurement model:

ym = Gfm + εm, (1)

where ym denotes the measurements for the mth frame, G

denotes the system model and εm denotes noise (possibly
Poisson). We assume that the object fm and measurement
ym are motion-free, i.e., the object does not move during the
mth scan (gate or frame).

2.2. Motion and warp model

Without loss of generality, we assume that f1 is our reference
image frame among {f1, · · · , fM}. Then, the rest of the im-
age frames are represented as a warped version of f1:

fm = Tmf1, m = 1, . . . , M, (2)
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where Tm is an image interpolation operator with the cor-
responding transformation that maps f1(x) to fm(x), i.e.,
fm(x) = f1(Tm(x)).

For many medical imaging modalities, a warp (2) usually
preserves mass or activity. In this paper, we adopt this mass-
preserving property and the new mass-preserving warp is:

fm = T̊mf1 � D(|∇Tm(xj)|)Tmf1 (3)

where D(·) is a diagonal matrix. One can show that the trans-
pose of T̊m is T̊ ′

m ≈ T−1
m .

2.3. Motion-compensated image reconstruction model

Substituting (3) into (1) yields a measurement model that de-
pends only on one image f1 instead of all images fm:

ym = GT̊mf1 + εm, m = 1, . . . , M.

Stacking up these models lead to the overall model

yc = GdT̊cf1 + εc, (4)

where yc = [y′
1, · · · , y′

M ]′, Gd = diag {G, · · · , G} , T̊c =

[T̊ ′
1, · · · , T̊ ′

M ]′, and εc = [ε′1, · · · , ε′M ]′. One can determine
T̊c from the measurements yc or from other measurements,
e.g., from CT in PET-CT systems or from MR in PET-MR.
Here we treat T̊c as predetermined (known).

One can use (4) with any statistical image reconstruction
approach such as penalized likelihood (PL). Here, we use a
penalized weighted least square (PWLS) function:

f̂MCIR � argmin
f1

‖yc − GdT̊cf1‖
2

Wd
+ η‖Cf1‖

2 (5)

= [T̊c

′
G′

dWdGdT̊c + ηR]−1T̊c

′
G′

dWdGdT̊cf1,

where Wd = diag {W1, · · · , WM} , Wm is a weight matrix
that approximates the inverse of the covariance of ym, η is a
regularization parameter. Independence of the measurements

yc leads to T̊c

′
G′

d
WdGdT̊c =

∑M
m=1

T̊ ′
mGWmGT̊m. In

here, we focus on quadratic regularization methods using
first-order differences as follows:

Rf1 = C ′Cf1 �
∑
m,n

L∑
l=1

rj
l ((cl ∗ ∗f1)[n, m])2, (6)

where ∗∗ denotes 2D convolution, f1[n, m] denotes the 2D
array corresponding to the lexicographically ordered vector
f1, j is the lexicographic index to the pixel at [n, m] and

cl[n, m] =
1√

n2

l + m2

l

(δ2[n, m]−δ2[n−nl, m−ml]), (7)

where {(nl, ml)} denote the offsets of the jth pixel’s neigh-
bors and δ2[n, m] denote the 2D Kronecker impulse. In here,
we used {(nl, ml)} = {(1, 0), (0, 1), (1, 1), (1,−1)}.

2.4. Regularization design

For a single-frame estimator f̂m(ym) based on (1), one can
define a local impulse response (LIR) for the jth pixel as [6]:

ljm = lim
δ→0

f̂m(y + δGej) − f̂m(y)

δ
.

Similarly, one can derive the LIR of MCIR estimator (5) as:

l
j
MCIR

= [T̊c

′
G′

dWdGdT̊c + R]−1T̊c

′
G′

dWdGdT̊cej .

We would like to design the regularizer R (i.e., to select rj
l in

(6)) so that the LIR closely matches some target point spread
function (PSF). A reasonable target for the jth pixel [8] is

l
j
0

= [G′G + R0]
−1G′Gej (8)

which is the (often shift-invariant) LIR of a penalized un-
weighted least square (PULS) estimator, and R0 denotes a
conventional shift-invariant regularizer. If we assume slowly
varying weights in Wm [8] and locally affine motion for non-

rigid motion Tm at the jth pixel, then T̊c

′
G′

d
WdGdT̊c be-

comes approximately a locally circulant matrix. By an argu-
ment similar to [8], one can show that “lj

MCIR
= l

j
0
” reduces

to

R0

M∑
m=1

T̊ ′
mG′WmGT̊mej ≈ RG′Gej. (9)

Therefore, our regularization design becomes an optimization
problem as follows for all j:

min
{r

j

l
}L

l=1

∥∥∥∥∥R0

M∑
m=1

T̊ ′
mG′WmGT̊mej − RG′Gej

∥∥∥∥∥
2

. (10)

2.5. Analytical formulation

To simplify the matrix formulation (10), we extend the ana-
lytical approach of [8] to the MCIR case. For T̊m = I, the
analytical form of (10) is well defined in [8]. For a polar
coordinates (ρ, ϕ) in frequency space, G′G ≡ |B(ρ)|2 /ρ
where B(·) denotes the frequency response of a typical ra-
dial blur function b(r). For a standard quadratic penalty
function R0 (i.e.

∫
‖∇f1‖

2), one can show that R0 ≡
(2πρ)2, and the quadratic funtion R, i.e. (6), becomes R ≡∑L

l=1
rj
l (2πρ)2 cos2(ϕ − ϕl), where ϕl = tan−1(ml/nl).

One can also show that

G′WmG ≡ ωj(ϕ)
∣∣Bj

ϕ(ρ)
∣∣2 /ρ, (11)

where Bj
ϕ(·) denotes the frequency response of the detector

response bj
ϕ(r) at angle ϕ local to where the jth pixel projects

onto the detector at that angle and ωj(ϕ) denotes the effective
certainty ωj(ϕ) =

∫ ∞

−∞ |bj
ϕ(r)|2ωϕ(r) dr/

∫ ∞

−∞ |bj
ϕ(r)|2 dr.

For static case T̊m = I, [8] showed that (10) becomes

min
{r

j

l
}L

l=1

∫ π

0

(
ω̄j(ϕ) −

L∑
l=1

rj
l cos2(ϕ − ϕl)

)2

dϕ, (12)
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where the angular-dependent weighting for the jth pixel is

ω̄j(ϕ) =

∫ ∞

−∞

|bj
ϕ(r)|2ωϕ(r) dr

/∫ ∞

−∞

|b(r)|2 dr (13)

To analyze the effect of motion on (11) and (13), we used
a continuous analogue of T̊ ′

mG′WmGT̊mf1 near the jth
pixel with a locally affine motion approximation and ignoring
blurring as follows:

f(x′) ∗ ∗

∫ π

0

ω(ϕ)δ(T−1(x′) · (cos ϕ, sin ϕ)) dϕ

∣∣∣∣
x′=x

,

(14)
where ω(ϕ) � ωϕ(T−1(x) · (cosϕ, sin ϕ)). Similar to the
scaling property of the Dirac impulse, one can approximate
δ(T−1(x) · h)/|∇T (x)| ≈ δ(x · h), and

T̊ ′
mG′WmGT̊m ≡ |∇T (xj)|ω

j′(ϕ)
∣∣∣Bj′

ϕ (ρ)
∣∣∣2/ ρ,

where Bj′

ϕ (·) denotes the frequency response of the bj′

ϕ (r) at
angle ϕ local to where the pixel at T−1(xj) projects onto the

detector at that angle and ωj′(ϕ) denotes the effective cer-
tainty corresponding to bj′

ϕ (r). Thus, (13) becomes

ω̄j
MCIR

(ϕ) = |∇T (xj)|ω̄
j′ (ϕ) (15)

which is

∑
m

|∇Tm(xj)|
∑

k

[tm]kj

∑
i∈Iϕ

a2

ik[ωm]i

/ ∑
i∈Iϕ

a2

ij (16)

where G = {aij}, T̊m = {[tm]ij}, Wm = diag {[ωm]i}, and
Iϕ denotes the set of rays that correspond to the projection at
angle ϕ. The key is that (16) accounts for local motion effects.

We can replace ω̄j(ϕ) in (12) with (16) and solving (12)
analytically is described in [8]. We use the same analytical
approach with (15) instead of (13). We omit the description
here due to space limits.

3. SIMULATION RESULTS

We generated a simple phantom with two high intensity rings
and warped it with 3 different count-preserving affine trans-
formations. We chose affine motion for illustration, but the
theory applies to any nonrigid motion because a Taylor ex-
pansion can approximate nonrigid motion locally as affine
motion. The original image has 160×160 pixels with 3.4 mm
pixel size in Fig. 1. We forward projected these original im-
ages using a PET scanner geometry with 164 detector samples
with 3.4 mm spacing 120 angular views, 3.4 mm strip width
to model detector response and 5% random coincidences. We
used a uniform attenuation map over the object.

To study spatial resolution, we reconstructed images from
these 4 noiseless sinograms using four methods: PULS (Tar-
get), PWLS with a constant quadratic regularizer (Standard),

True Phantom (4 gates)

1 160

1

160

Fig. 1. Four true phantom images with affine motion.

PWLS with a certainty based regularizer considering Jaco-
bian determinant [10] (Certainty9), and the proposed method
(Proposed) based on (16). We used a preconditioned conju-
gate gradient method for all optimizations.

Fig. 2 shows that the Standard approach yields highly
nonuniform resolution. Certainty9 reduced this nonunifor-
mity, but the rings still have nonuniform intensity due to the
anisotropic PSF. The Proposed method yields nearly uni-
form intensities around the rings, as desired, and matches the
Target closely. Fig. 3 shows profiles around the rings; our
Proposed approach closely matches the target resolution.

Fig. 4 shows that motion can further skew the PSF (Stan-
dard) compared to the PSF without motion (Standard1, one
gate). Certainty9 was designed to achieve uniform spatial res-
olution but it still has an anisotropic shape. The Proposed PSF
matches the Target PSF approximately.

4. DISCUSSION

This paper proposed a 2D quadratic regularization design for
MCIR methods. The proposed regularizer efficiently utilizes
the analytical approach to spatial regularizer design with a
simple modification of the static version in [8]. The results
show that our proposed regularizer can achieve the nearly
uniform and isotropic PSFs even in the presence of large
anisotropic motion.

Natural future work includes evaluation with more gen-
eral nonrigid motion and extending the theory to 3D. This
approach can also be used to design a regularizer for fan-
beam geometry by modeling the warp between fan-beam and
parallel-beam coordinates. By composing the geometry warp
and nonrigid patient motion, one may be able to design regu-
larizers that compensate for both motion and non-parallel ge-
ometries simultaneously. We also expect to be able to predict
noise properties of MCIR methods using this type of analysis.
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Target Standard

Certainty9 Proposed

Fig. 2. In Standard, uneven intensity around rings can be ob-
served even though True Phantom and Target have uniform
intensities. Proposed approach achieves approximately uni-
form intensity around the rings.
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Fig. 3. Profiles around the left ring. The Proposed approach
closely matches the target image.
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