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ABSTRACT
Compressed sensing for MRI (CS-MRI) attempts to recover
an object from undersampled k-space data by minimiz-
ing sparsity-promoting regularization criteria. The iterative
reweighted least squares (IRLS) algorithm can perform the
minimization task by solving iteration-dependent linear sys-
tems, recursively. However, this process can be slow as
the associated linear system is often poorly conditioned for
ill-posed problems. We propose a new scheme based on
the matrix inversion lemma (MIL) to accelerate the solving
process. We demonstrate numerically for CS-MRI that our
method provides signicant speed-up compared to linear and
nonlinear conjugate gradient algorithms, thus making it a
promising alternative for such applications.

Index Terms�— Compressed sensing, MRI, iterative
reweighted least squares, matrix inversion lemma, nonlin-
ear conjugate gradient.

1. INTRODUCTION
Magnetic resonance imaging (MRI) is a popular technique
that offers great exibility in imaging soft tissues. However,
a fundamental drawback of MRI is its low data-acquisition
speed. Emerging trends to reduce MR scan time focus on
undersampling k-space and attempting to estimate the under-
lying object by mathematical modeling. The theory of com-
pressed sensing for MRI (CS-MRI) [1] provides insight into
how this can be achieved: The basic assumption is that many
MR images are inherently sparse in some transform domain
and can be reconstructed with high accuracy from signi-
cantly undersampled k-space data by minimizing transform-
domain sparsity-promoting regularization criteria subject to
data-consistency. This problem is usually handled in a nu-
merical optimization framework using iterative algorithms.

In this work, we concentrate on iterative reweighted least
squares (IRLS) algorithms as they are versatile in accom-
modating multiple convex/nonconvex regularization criteria
simultaneously. The IRLS algorithm is a simple technique
that performs the minimization task by repetitively solving
many linear systems: The key point is, at each iteration i,
the associated Hessian matrix, A(i), depends on the pre-
vious iterate, thus making it a nonlinear algorithm on the
whole. However, for ill-posed problems, A(i) may not be
well-conditioned due to the �“nonsmooth�” nature of sparsity-
promoting regularization criteria. In such cases, iterative
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solvers like conjugate gradient (CG) may have slow overall
convergence rates. Preconditioning the linear system can al-
leviate this problem. Since the ideal preconditioner is A−1

(i) ,
we propose to investigate the use of the matrix inversion
lemma (MIL) for this problem. We devise a xed-point
solver for the original linear system, which asymptotically
becomes equivalent to having a close approximation to A−1

(i)

as the preconditioner. We perform various synthetic exper-
iments for CS-MRI and demonstrate numerically that the
proposed MIL-based method signicantly improves the con-
vergence speed compared to solvers that use conventional
preconditioners. We also found that our method outperforms
the nonlinear conjugate gradient algorithm. Our approach
is fairly general and can be readily extended to treat other
inverse problems such as deconvolution.

2. PROBLEM FORMULATION
We consider the standard CS-MRI problem where the mea-
surements are taken in the Fourier domain (k-space) but are
undersampled to reduce the scan time. Reconstruction from
such partially sampled data is an ill-posed problem and it in-
variably requires the use of regularization for obtaining mean-
ingful results. The problem is formulated as [1]:

û = arg min
u

R{u} such that ‖y − Fu‖2
!2 < ε2, (1)

where û and y are vectors that correspond to the reconstruc-
tion and the noisy k-space data, respectively, F denotes the
matrix corresponding to the partially-sampled Fourier trans-
form (after suitable discretization), and R is a regularization
operator. The constraint in (1) ensures that the reconstruction
is robust to measurement errors such as noise in the data. The
constrained optimization problem (1) can be converted to the
following unconstrained form

û = arg min
u

{‖y − Fu‖2
!2 + λR{u}},

where the regularization parameter λ decides the trade-off
between the delity of the solution u to the data y and the
amount of imposed regularization. In practice, λ can be cho-
sen so as to meet the constraint in (1).

The reconstruction quality depends on the choice of R. A
classical choice is R{u} = ‖u‖2

!2
which, in the limit ε → 0,

leads to the �“minimum-energy�” reconstruction obtained by
rst lling the missing k-space samples with zeros and then
taking the inverse Fourier transform [2]. However, this ap-
proach is highly suboptimal as the resulting output would be



strewn with blurring and aliasing artifacts [2]. Instead, several
authors apply the theory of compressed sensing and select R
so as to exploit the assumed sparsity in MR images. A popular
choice is R{u} = ‖Ψ{u}‖!1 [1, 2], where Ψ is a sparsifying
operator such as wavelets. It has also been noted in [1] that
including a total-variation (TV) type edge-preserving regu-
larization is benecial in such problems. We will therefore
consider the formulation

û = arg min
u

Jλ1,2(u), (2)

Jλ1,2(u) = ‖y − Fu‖2
!2 + λ1 ‖Wu‖!1 + λ2 TV{u},

where the matrix W corresponds to a wavelet transform, and
TV{·} is the discretized version of the total-variation norm

given by TV{u} =
∑

k

√

∑d
n=1 |Dnu|2k, where (u)k repre-

sents k-th element of u, d is the number of spatial dimensions
of the image u (d = 2 or 3 in imaging applications), and
{Dn}d

n=1 are matrices that correspond to nite-differences
along the n-th dimension. In this work, we focus on shift-
invariant wavelet transforms for W which are known to
exhibit less block-artifacts than orthonormal wavelet trans-
forms. The methods also apply to the orthonormal case.

3. METHODS
We propose to handle (2) in the analysis-form (i.e., where the
solution u is obtained by �“analyzing�”, or penalizing, the coef-
cients Wu and Dnu) since {Dn}d

n=1 are not invertible. The
associated criterion Jλ1,2 , which is convex, can be effectively
minimized using iterative gradient-descent-based methods. A
prominent method in this category is the nonlinear conjugate
gradient (NCG) algorithm which iteratively minimizes Jλ1,2

by traversing along conjugate directions to the minimizer. A
line-search is necessary at each iteration to nd the optimal
step-size along a minimizing direction. A potential alterna-
tive to NCG is the iterative reweighted least squares (IRLS)
scheme. In the sequel, we give details of the IRLS algorithm
applied to (2) and then present our approach for improving its
convergence speed.

Iterative Reweighted Least Squares (IRLS) Algorithm
We use the majorize-minimize formulation [3] to describe
the IRLS algorithm although it can be shown that the Euler-
Lagrange equations or the half-quadratic approaches also lead
to an identical method for problem (2).

Consider the auxiliary criterion JAUX(u,u(i)) dened at
a given iterate u(i) obtained using [3, Equation (11)]:

JAUX(u,u(i)) = ‖y − Fu‖2
!2 + uH RHΘΘΘ(i)Ru + C,

where R = [
√

λ1W
H
√

λ2D
H
1 · · ·

√
λ2D

H
d ]H, (·)H is the

Hermitian-transpose, C is a constant with respect to u,

ΘΘΘ(i) = diag{ΘΘΘW(i)
ΘΘΘTV(i)

· · · ΘΘΘTV(i)
}, (3)

ΘΘΘW(i)
= diag

{

(

2
√

|Wu(i)|2k + µ

)

−1
}

, (4)

ΘΘΘTV(i)
= diag

{

(

2
√

∑d
n=1 |Dn u(i)|2k + µ

)

−1
}

,(5)

and where µ is a small positive constant that is commonly
added to #1-type analysis-priors in Jλ1,2 to increase numerical
stability of corresponding minimization algorithms. It can be
shown that JAUX(u,u(i)) majorizes Jλ1,2(u), i.e., Jλ1,2(u) <
JAUX(u,u(i)) ∀ u &= u(i) and Jλ1,2(u(i)) = JAUX(u(i),u(i)),
so that minimizing JAUX decreases Jλ1,2 (this however holds
strictly only when µ > 0 is accounted for in Jλ1,2 ). Since
JAUX is quadratic in u, it can be minimized by setting its gra-
dient with respect to u to zero which leads to the following
linear system of equations

A(i) u(i+1) = FHy (6)

that must be solved to obtain the next iterate u(i+1), where
A(i) = FHF + RH ΘΘΘ(i) R.

Standard Approach for Solving (6)
In imaging applications, (6) cannot be solved exactly due to
the large dimensionality of u. A fairly standard practice there-
fore is to run a few conjugate gradient (CG) iterations on
(6) to partially solve for u(i+1). However, because W and
{Dn}d

n=1 are sparsifying operators, some values (Wu(i))k

and (Dnu(i))n,k may be small, and so A(i) may be poorly
conditioned due to (4) and (5). A preconditioned CG (PCG)
algorithm is frequently employed to accelerate the conver-
gence. Some common preconditioners include the Jacobi di-
agonal preconditioner Mdiag = diag{1/(A(i))kk}, and the
preconditioner Mcirc = (FHF + RH R)−1 (obtained by dis-
carding ΘΘΘ(i) in A(i)) which turns out to be a circulant matrix
when sample locations are specied on a cartesian grid in k-
space and when RHR is circulant (e.g., the case where W is
shift-invariant). The resulting IRLS-PCG algorithm is

Algorithm 1: IRLS-PCG algorithm for minimizing Jλ1,2

Step 1: Initial estimate = u(0); i = 0
Repeat Steps 2 - 3 until Stop Criterion is met
Step 2: Update ΘΘΘ(i) using u(i) in (3) - (5)
Step 3: Run few PCG iterations on (6) to get u(i+1); Set i = i+1

Proposed Scheme for Solving (6)
Since the major task in IRLS is to solve (6), we propose to ap-
ply matrix inversion lemma (MIL) to A−1

(i) . Because F is not
invertible, we propose the following matrix-splitting scheme

u(i+1,j+1) = B−1
(i) (FHy + (C(i) − FHF)u(i+1,j)), (7)

where B(i) = (C(i) + RH ΘΘΘ(i) R), and C(i) is chosen to be
an invertible matrix such that C(i) ' FHF. The above itera-
tion on j is bound to converge to the solution of (6) since the
spectral radius $(B−1

(i) (C(i) − FHF)) < 1 whenever C(i) '
FHF [4, Theorem 3.2.7, p. 48]. We now apply MIL to
B−1

(i) to get B−1
(i) = C−1

(i) − C−1
(i) R

H G−1
(i) R C−1

(i) , where

G(i) = ΘΘΘ−1
(i)+ R C−1

(i) R
H. Therefore, (7) becomes

u(i+1,j+1) = b(i+1,j) − C−1
(i) RH v(i+1,j), (8)

G(i) v(i+1,j) = Rb(i+1,j), (9)
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Fig. 1. Experiment 1 (SL phantom): Plot of κ(i) versus time ti.

where b(i+1,j) = C−1
(i) F

Hy + (I − C−1
(i) F

HF)u(i+1,j). An

advantage of this approach is that G(i) depends on ΘΘΘ−1
(i) rather

than ΘΘΘ(i), which provides the option to do away with the un-
desirable constant µ in (3)-(5). Based on (7)-(9), we present
our IRLS-MIL algorithm below where we have assumed that
C(i) is chosen a priori for all iterations i.

Algorithm 2: IRLS-MIL algorithm for minimizing Jλ1,2

Step 1: Initial estimate = u(0); i = 0
While Stop Criterion for i-loop is not met
Step 2: Update ΘΘΘ−1

(i) using u(i); Set j = 0, u(i+1,0) = u(i)

While Stop Criterion for j-loop is not met
Step 3: Compute b(i+1,j)

Step 4: Run few CG iterations on (9) to get v(i+1,j)

Step 5: Update u(i+1,j+1) using (8); Set j = j+1
end of j-loop

Step 6: Set i = i + 1
end of i-loop

IRLS-MIL is certainly more involved than IRLS-PCG
both in terms of computation (products with C−1

(i) ) and
storage requirements (for handling v(i+1,j)). However,
we hope that using (7) will provide faster convergence
than IRLS-(P)CG since $(B−1

(i) (C(i) − FHF)) → 0 when

C(i) → FHF. Alternatively, the xed point of (7) satises
B−1

(i) A(i)u(i+1) = B−1
(i) F

Hy. Thus, using (7) is equivalent

to having B−1
(i) as the preconditioner for solving (6), which

approaches the ideal preconditioner A−1
(i) as C(i) → FHF.

Choice of C

In CS-MRI, FHF has a block-Toeplitz structure which can
be exploited to write FHFu = ZHQZu, where the action
of Z on u is to pad u with zeros to obtain a vector that is
twice long as u and Q is a circulant matrix [5]. Then, choos-
ing C(i) = ZHQZ + αI ensures C(i) ' FHF for α > 0.
This form of C(i) can also be efciently inverted using the
technique proposed in [6]. However, caution must be ex-
ercised in selecting α because, as α → 0, C−1

(i) will be-
come numerically unstable. On the other hand, when α ( 0,
$(B−1

(i) (C(i) −FHF)) → 1, resulting in slow convergence of
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Fig. 2. Experiment 2 (T1-MR image): Plot of κ(i) versus time ti.

IRLS-MIL. Therefore, the key to the successful application of
IRLS-MIL relies in selecting α such that C(i) ≈ FHF while
ensuring a numerically stable C−1

(i) .
In this paper, we restrict our focus to sampling patterns

that are conned to a cartesian grid. Then, FHF becomes
circulant, in which case we select Ccirc(i) = FHF + αRHR
since Ccirc(i) becomes a circulant approximation to A(i)

(when W is shift-invariant) and can be inverted efciently
using FFTs. We found that Ccirc(i) with α ∈ [0.001, 0.02]
provided excellent results in our experiments.

4. EXPERIMENTS

We performed three experiments, one with each of the fol-
lowing 256×256 synthetic images: Shepp-Logan (SL) phan-
tom, T1- and T2-MR images obtained from the Brainweb
database [7]. We considered three different k-space sampling
schemes (conned to a cartesian grid): radial sampling (18
radial lines, 93% undersampling), variable-density random
sampling (80% undersampling), and variable-density multi-
shot spiral (70% undersampling), one for each test image, re-
spectively. In each experiment, complex additive white Gaus-
sian noise was added to simulate noisy data with 30 dB SNR.
For the experiment with SL phantom, we only considered the
TV-regularization (i.e., we set λ1 = 0 in Jλ1,2 ) since the
phantom already has a sparse representation in terms of its
image-gradient. However, for experiments with MR images,
we used both regularization terms taking care to set λ1,2 to
obtain visually appealing reconstructions. For W, we used 2
levels of the undecimated Haar wavelet transform excluding
the �‘scaling�’ coefcients.

In all experiments, we compared the following variations
of NCG and IRLS algorithms: (i) NCG (no preconditioning),
(ii) PNCG (preconditioned NCG), (iii) IRLS-CG NNN (N CG
iterations at Step 3 of Algorithm 1), (iv) IRLS-PCG NNN (N
preconditioned CG iterations at Step 3 of Algorithm 1), (v)
IRLS-MIL-CG NNN (N CG iterations at Step 5 of Algorithm
2 with only one iteration of the j-loop). We used Mcirc as the
preconditioner since Mdiag did not provide any signicant
improvement. NCG algorithms used the line-search (with
3 iterations) described in [8] that guarantees monotonic de-
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Fig. 3. Reconstruction results for Experiment 3: (a) Original noise-free T2-MR image, (b) multi-shot spiral scheme (70% undersampling),
(c) minimum-energy reconstruction, (d) u(∞) the actual solution of (2), (e) IRLS-MIL output (κ(·) = 10−3 after ti = 253 seconds), (f) NCG
output (κ(·) = 10−3 after ti = 1928 seconds). As expected, (e) and (f) are virtually identical to (d) indicating that the outputs of IRLS-MIL
and NCG have converged to u(∞), but IRLS-MIL has done so nearly 7.5 times faster than NCG.
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Fig. 4. Experiment 3 (T2-MR image): Plot of κ(i) versus time ti.

crease of Jλ1,2 . The parameter µ in (4)-(5) was set to 10−10

for the algorithms based on (P)NCG and IRLS-(P)CG while
it was set to zero for IRLS-MIL. The algorithms were imple-
mented in MATLAB and the experiments were performed on
a PC with 3.4 GHz Intel Xeon processor. Since all algorithms
minimized the same Jλ1,2 (which decides the reconstruction
quality), we focused on their convergence speed rather than
their SNR improvement. Therefore, for all algorithms, we
examined the normalized #2-distance between u(i) and u(∞)

given by κ(i) = ‖u(i) − u(∞)‖!2/‖u(∞)‖!2 , where u(∞)
(corresponds to the limiting case i → ∞) represents the ac-
tual solution of (2); it was obtained in each experiment by
running hundreds of iterations of the IRLS-PCG 500 algo-
rithm. The u(∞) solution was numerically veried by sep-
arately running several thousands of iterations of the PNCG
algorithm.

Since the algorithms have different computational loads
per iteration, we evaluated κ(i) as a function of algorithm
run-time ti (time elapsed from start till iteration i). Figures 1,
2 and 4 plot κ(i) for various algorithms as a function of ti for
the three experiments, respectively. The preconditioned al-
gorithms, PNCG and IRLS-PCG, generally exhibit some im-
provement over their unpreconditioned counterparts. How-
ever, the proposed IRLS-MIL scheme demonstrates a clear
lead in convergence speed over all IRLS and (P)NCG algo-
rithms considered in this work. Figure 3 displays u(∞) and
the outputs of IRLS-MIL and NCG (which is slightly faster

than PNCG) for Experiment 3. As expected, u(∞) and the
IRLS-MIL and NCG images are visually indistinguishable
because these algorithms converge to u(∞). However, the
proposed IRLS-MIL does so much sooner than NCG.

5. CONCLUSIONS AND DISCUSSION
Iterative reweighted least squares (IRLS) algorithms nd
the minimizer of a nonquadratic cost criterion by attempt-
ing to solve a weighted-linear system at each iteration. We
proposed the use of matrix inversion lemma (MIL) for this
task and demonstrated based on numerical experiments that
our scheme�—IRLS-MIL�—converges to the true minimizer
signicantly faster than some popular methods like non-
linear conjugate gradient (NCG) for the problem of com-
pressed sensing MRI. The proposed method can also be
directly applied to other inverse problems that are based
on shift-invariant data-acquisition models, e.g., deconvolu-
tion. Expanding the applicability of IRLS-MIL to nonconvex
priors [2] and shift-variant imaging systems is a research
direction that we hope to pursue in the future.
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