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Abstract—The greatest impediment to practical adoption of
iterative methods for X-ray CT is the computation burden of
cone-beam forward and back-projectors. Moreover, forward and
back-projector accuracy is also crucial to iterative reconstruction
methods. We previously described a computationally efficient
projector that approximates the voxel footprint functions by the
2D separable products of trapezoid functions in the transaxial
plane and rectangular functions in the axial direction [1], [2].
The separability of these footprint functions simplifies calculating
their integrals over rectangular detector cells. We showed that
this separable footprint (SF-TR) method was more accurate
than the distance-driven (DD) method but with comparable
computation time. This paper describes a new extension of
that projector, called the SF-TT projector, that uses trapezoid
functions in both directions. We show that using a trapezoid
along the axial direction improves projector accuracy for voxels
associated with larger cone angles. However, this improved
accuracy requires increased computation compared to the rect-
angular approximation. Having both options available facilitates
evaluation of the trade offs between accuracy and computation
for different cone-beam geometries.

Index Terms—Cone-beam tomography, iterative tomographic
image reconstruction, forward and back-projection, separable
footprint

I. INTRODUCTION

Iterative statistical methods for 3D tomographic image re-

construction offer the potential for improved image quality

and reduced X-ray dose, compared to conventional filtered

back-projection (FBP) methods. The primary computational

bottleneck in iterative reconstruction methods is forward and

back-projection operations. The forward projection is roughly

a discretized evaluation of the Radon transform, and the back-

projector is its adjoint. Mathematically, an accurate forward

projector must compute the convolution of the footprint of

an image basis function with some detector blur model, such

as a 2D rectangular function that represents the finite size of

detector cells.

Numerous 3D forward and back-projection methods have

been proposed [1]–[8]. Each method compromises between

computational complexity and accuracy. Spherically symmet-

ric basis functions (blobs) [5], [6] have radially symmetric

footprints that conveniently are independent of the viewing

angle, except for a magnification factor. However, when high

accuracy is desired, blob footprints intersect many more de-

tector cells than voxel footprints, increasing computation.
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The distance-driven (DD) method [4] maps the horizontal

and vertical boundaries of the image voxels and detector cells

onto a common plane such as xz or yz plane, approximating
their shapes by rectangles. It calculates the lengths of overlap

along the transaxial direction and along the axial direction, and

then multiplies them to get the area of overlap. The DD method

has the largest errors when the X-ray source’s azimuthal angle

is near odd multiples of π/4, where the transaxial footprint is
approximately triangular rather than rectangular.

We proposed previously a separable footprint (SF-TR) pro-

jector [1] that approximates the voxel footprint functions as

2D separable functions with trapezoid and rectangle func-

tions in the transaxial and axial directions respectively. The

separability of these footprint functions greatly simplifies the

calculation of their integrals over detector cells leading to

an efficient implementation. The SF-TR method has similar

computation speed as the DD projector, but is more accurate,

reducing particularly the errors around odd multiples of π/4.
The rectangle approximation in the axial direction is reason-

able for smaller CT cone angles such as multi-slice detector

geometries. However, for CT systems with larger cone angles

(> 10◦), such as flat-panel detector geometries, the rectangle
approximation becomes less accurate.

This paper describes a new separable footprint method

for forward and back-projection called the SF-TT method. It

approximates the voxel footprint functions using 2D separable

functions with trapezoid functions in both the transaxial and

axial directions. We show that the SF-TT projector is more

accurate than the SF-TR projector, but requires more compu-

tation. To balance computation and accuracy, one may use the

SF-TR projector for voxels associated with small cone angles

(i.e., near the plane of the X-ray source) where the rectangle

approximation is adequate, and use the new SF-TT projector

for voxels associated with larger cone angles.

The organization of this paper is as follows. Section 2

describes the cone-beam 3D system model, and introduces the

SF-TT projector. Section 3 gives simulation results, including

accuracy and speed comparison between the SF-TT and SF-

TR projector as stand alone modules and within iterative image

reconstruction. Finally, conclusions are in Section 5.

II. METHOD

A. Cone-Beam 3D System Model

For iterative image reconstruction, we forward project a

discretized approximation of the continuous-space object f("x)
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represented by a common basis function β0("x) superimposed
on a N1 × N2 × N3 Cartesian grid as follows:

f("x) =
∑

!n

f ["n] β0

(

("x − "c["n]) # "∆
)

, (1)

where the sum is over the N1×N2×N3 lattice that is estimated

and "c["n] = (c1["n], c2["n], c3["n]) denotes the center of the "nth
basis function and "n = (n1, n2, n3) ∈ Z3. The grid spacing

is "∆ = (∆1, ∆2, ∆3), and # denotes element-wise division.

We consider the case ∆1 = ±∆2 hereafter, but we allow

∆1 %= ∆3, because voxels are often not cubic.

Axial cone-beam projection space is characterized by three

independent indices (s, t, β) and two distance parameters

(Dsd, Ds0), where β denotes the angle of the source point

counter-clockwise from the y axis, (s, t) denote the local
coordinates on the 2D detector plane where the s-axis is
perpendicular to the z-axis and the t-axis is parallel to the
z-axis Dsd denotes the source to detector distance and Ds0

denotes the source to rotation center distance.

The cone-beam projections of f("x) are given by

p(s, t; β) =

∫

L(s,t,β)

f(x, y, z) d$, (2)

where

L(s, t, β) =

{

"p0 + α"e3 : α ∈

[

0,
√

D2
sd

+ s2 + t2
]}

,

and "e3 denotes the direction vector of a ray from the source

position "p0 to a point "p1 on the detector plane.

Assume that the detector blur h(s, t) is shift invariant,
independent of β, and acts only along the s and t coordinates.
Then the mean projections satisfy

ȳβ[sk, tl] =

∫∫

h(sk − s, tl − t) p(s, t; β) ds dt, (3)

where (sk, tl) denotes the center of detector cell specified by
indices (k, l) for k = 0, . . . , Ns − 1 and l = 0, . . . , Nt − 1.
Substituting the basis expansion model (1) for the object

into (3) and using (2) leads to the linear model

ȳβ[sk, tl] =
∑

!n

aβ [sk, tl;"n] f ["n], (4)

where the elements of cone-beam system matrix A are sam-

ples of the following cone-beam projection of a single basis

function centered at "c["n]:

aβ [sk, tl;"n] = F (sk, tl; β;"n), (5)

where the “blurred footprint” function is

F (s, t; β;"n) !

∫∫

h(s − s′, t − t′) q(s′, t′; β;"n) ds′ dt′,

and q(s, t; β;"n) denotes the cone-beam footprint of basis

function β0

(

("x − "c["n]) # "∆
)

, i.e.,

q(s, t; β;"n) =

∫

L(s,t,β)

β0

(

("x − "c["n]) # "∆
)

d$ . (6)

The goal of forward projectors is to compute (4) rapidly but

accurately.

A simple model for the detector blur is

h(s, t) =
1

rsrt
rect

(

s

rs

)

rect

(

t

rt

)

, (7)

where rs and rt denote the width along s and t respectively.
This model accounts for the finite size of the detector ele-

ments.

B. Separable Footprint Projector with Trapezoid Functions

(SF-TT)

The footprints of voxel basis functions can be computed

analytically for cone-beam geometries [9, p. 104]. Fig. 1 shows

an example of a true footprint and its profiles. This 2D function

is approximately separable except for small areas at the upper

left and lower right corner.
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Fig. 1. The exact footprint function q(s, t; β;"n) and its profiles of a voxel
with ∆1 = ∆2 = ∆3 = 1mm centered at (93, 93, 93)mm under a flat-
detector cone-beam geometry with Dsd = 949mm and Ds0 = 541mm when
β = 0◦. The azimuthal and polar angle of the ray connecting the source and
the voxel center are 11.7◦ and 11.5◦ respectively.

Inspired by the shape of the true footprint, we approximate

voxel footprints as 2D separable functions with trapezoid

functions in both the transaxial and axial direction as follows,

q(s, t; β;"n) ≈ 'Xl(β;"n) trap(s; τ0, τ1, τ2, τ3)

· trap(t; ξ0, ξ1, ξ2, ξ3) , (8)

where

l(β;"n) !
1

| cos(θ0) | · max{| cos(ϕ0) |, | sin(ϕ0) |}
,

trap(a; b0, b1, b2, b3) !















a−b0
b1−b0

, b0 < a < b1

1, b1 ≤ a ≤ b2

b3−a
b3−b2

, b2 < a < b3

0, otherwise,

(9)

where θ0 and ϕ0 denote the polar and azimuthal angles of

the ray connecting the source and center of the "nth voxel
respectively, τ0, τ1, τ2 and τ3 denote vertices of the trapezoid

function which are at the exact locations as those of the true

footprint function in the s direction, and ξ0, ξ1, ξ2 and ξ3

denote vertices of the trapezoid function in the t direction
which are the projected t coordinates of four axial boundaries
of the voxel.

Using the projections of boundaries of the voxel basis func-

tion as the boundaries of the approximate separable footprints

ensures the depth-dependent magnification of the cone-beam

geometry is modeled accurately. It also allows the approxi-

mated separable footprints to adapt their shapes according to

relative positions of the source, detector and voxels, as true

footprints do. For example, for a voxel centered at the origin,

its axial footprint is approximately a rectangular function as
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shown in [1, Fig. 1], instead of a trapezoid function. For

this voxel trap(t; ξ0, ξ1, ξ2, ξ3) is almost a rectangle because
ξ0 ≈ ξ1 and ξ2 ≈ ξ3 because ξ0, ξ1, ξ2 and ξ3 are the projected

t coordinates of four axial boundaries of the voxel.
To accelerate the computation of the SF-TT projector, we

adopt the acceleration method used by the SF-TR projector

[1]. We initially ignore l(β;"n) by setting l(β;"n) = 1 for all
the voxels at any projection view, and then scale the “blurred

footprint” functions by multiplying them by a ray-dependent

scale factor.

III. RESULT

A. Forward and Back-Projector as Single Modules

We simulated an axial cone-beam flat-detector X-ray CT

system with a detector size of Ns × Nt = 512 × 512 cells
spaced by ∆S = ∆T = 1mm with Nβ = 984 angles over
360◦. The source to detector distance Dsd is 949mm, and the

source to rotation center distance Ds0 is 541mm. We included

a rectangular detector response (7) with rs = ∆S and rt = ∆T.

We implemented the SF-TR and SF-TT projector in ANSI

C using single precision. The DD projector was provided by

De Man et al., also implemented in ANSI C.

1) Maximum Errors of Forward Projectors: We define the

maximum error as

e(β;"n) = max
s,t∈R

|F (s, t; β;"n) − Fap(s, t; β;"n)| , (10)

where Fap(s, t; β;"n) is any of the approximate blurred foot-
prints by the SF-TR, SF-TT and DD methods. We generated

the true footprint F (s, t; β;"n) in (5) by linearly averaging
1000 × 1000 analytical line integrals of rays sampled over
each detector cell.

We compared the maximum errors of the forward SF-TR,

SF-TT and DD projectors for a voxel with 'X = 'Y =
'Z = 1 mm centered at (0, 0,−100) mm. Since the voxel is
centered at the origins of x and y axes, we choose Nβ = 180
angles over only 90◦ rotation. Fig. 2 shows the results on a
logarithmic scale. The maximum errors of the SF-TT projector

are smaller than those of the SF-TR and DD projector, e.g.,

the maximum errors of the DD and SF-TR projector are about

18 and 3 times larger than that of the SF-TT projector when
β = 45◦. We also compared the maximum errors for a voxel

centered at (100, 150,−100) mm. We choose Nβ = 720
angles over 360◦ rotation due to the offsets of this voxel in
the x and y direction. Fig. 3 shows the results. The maximum
errors over 360◦ rotation of the DD and SF-TR projector are

about 13 and 3 times of that of the SF-TT projector.
2) Speed of Forward and Back-projectors: We compared

the computation times of the SF-TR, SF-TT and DD projectors

using an image whose size is N1 = 512, N2 = 512, N3 = 128
and spacing is ∆1 = ∆2 = ∆3 = 0.5 mm. We evaluated
the elapsed time using the average of 5 projector runs on a

8-core Sun Fire X2270 server with 2.66 GHz Xeon X5500

processors. Because of the “hyperthreading” of these Nehalem

cores, we used 16 POSIX threads to parallelize the projection

operation across views. (We found that using 16 threads

reduced computation time by only about 10% compared to

using 8 threads.)
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Fig. 2. Maximum error comparison between the forward DD, SF-TR and
SF-TT projector for a voxel centered at (0, 0,−100)mm.
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Fig. 3. Maximum error comparison between the forward DD, SF-TR and
SF-TT projector for a voxel centered at (100, 150,−100)mm.

Table I summarizes computation times. The computation

times of the SF-TR and DD projector are about the same,

whereas the SF-TT projector is about 2 times slower. Of course
execution times depend on code implementation.

B. Forward and Back-projectors within Iterative Reconstruc-

tion

We also compare the SF-TT projector and the SF-TR

projector within an iterative reconstruction method. (We al-

ready showed the SF-TR method provides less artifacts in the

reconstructed images than the DD method in [1]).

We simulated a X-ray axial cone-beam CT system with

a flat-panel detector of 512 detector channels for 512 slices

Projectors SF-TT SF-TR DD

Forward time (seconds) 91 35 46

Backward time (seconds) 92 44 49

TABLE I
SPEED COMPARISON OF THE SF-TT, SF-TR AND DD FORWARD AND

BACK PROJECTORS.
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(Ns = 512, Nt = 512) by Nβ = 984 views over 360◦. The
size of each detector cell is ∆S×∆T = 1×1 mm2. The source

to detector distance is Dsd = 949.075 mm, and the source to
rotation center distance is Ds0 = 541 mm. A quarter detector
offset in the s direction is included to reduce aliasing.
We modified the 3D Shepp-Logan digital phantom to in-

clude several ellipsoids centered at the z = 112.5 plane

because the trapezoid approximation of the SF-TT method

is more realistic than the rectangle approximation of the SF-

TR method especially for voxels far away from the origin.

The field of view (FOV) is 250 × 250 × 250 mm3, implying

256×256×256 voxels with a resolution of 0.9766×0.9766×
0.9766 mm3. We simulated noiseless cone-beam projection

measurements from the Shepp-Logan phantom by linearly

averaging 8 × 8 analytical rays [9, p. 104] sampled across
each detector cell. To focus on the projector accuracy, we used

noiseless projection data.

We implemented iterative image reconstruction with these

two projector/backprojector methods. We ran 50 iterations of
the ordered subsets method with 82 subsets [10], initialized
with reconstruction by the FDK method [11], for the following

penalized weighted least-squares cost function with an edge-

preserving “hyperbola” penalty function (PWLS-OS):

Φ(x) =
∑

i

wi
1

2
(yi − [Ax]i)

2 + βR(x) (11)

R(x) =
∑

k

ψ([Cx]k), (12)

where yi is the negative log of the measured cone-beam

projection, wi values are statistical weighting factors, A is

the system matrix, C is a finite differencing matrix and ψ(t)
is the potential function. Here we used the hyperbola:

ψ(t) =
δ2

3

(
√

1 + 3 (t/δ)2 − 1

)

. (13)

For this simulation, we used wi = exp(−[Ax]i), β = 2 and
δ = 5 Hounsfield units (HU).
For this iterative reconstruction experiment, we did not see

obvious visual differences between reconstructions by the SF-

TT and SF-TR method, and the normalized root-mean-square

(NRMS) errors were similar. It appeared that the axial cone-

beam artifacts due to poor sampling (not truncation) at the off-

axis slices dominated other effects in the reconstructed images,

such as the errors caused by rectangle approximation. Further

research will evaluate these two projectors within iterative

reconstruction methods under other CT geometries where the

off-axis sampling is better, such as helical scans, yet where

the cone angle is large enough to differentiate the SF-TT and

SF-TR method .

IV. CONCLUSION

We have presented a 3D forward and back projector, named

the SF-TT projector for X-ray CT. Our results have shown

that the SF-TT projector is more accurate but computationally

slower than the SF-TR projector. We demonstrated previously

that the SF-TR projector is more accurate than the well-known

DD projector but with similar computation speed in [1].

The SF-TT projector uses trapezoid functions in both the

transaxial and axial directions. Using trapezoid functions in

the axial direction involves more computation compared with

using simple rectangular functions, such as projecting four

axial boundaries of each voxel instead of two and evaluating

the weight (contribution of a voxel to a detector cell) in two

additional triangle areas of each trapezoid function. Thus it is

reasonable that the computation time of the SF-TT projector

was about 2 times that of the SF-TR projector. To save

computation and maintain relative accuracy, one may use the

original SF-TR projector for voxels that are near the X-ray

source plane, where the cone angles are small and the rectangle

approximation is reasonable, and use the SF-TT projector for

other voxels.
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