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Abstract—We address the question of whether or not the
directional or imaging information offered by a position–sensitive
gamma-ray detector improves the detection accuracy when
searching for a source of known shape amid a background
of known intensity. We formulate the detection problem as a
composite hypothesis testing problem and examine the behavior
of the generalized likelihood ratio test (GLRT) in terms of the
area under the receiver operating characteristic (AUC). Due to
the analytical complexity of the GLRT in this case, we examine
its asymptotic properties when the number of detected photons
is large. We find that a detector of uniform sensitivity can more
accurately detect a source when imaging information is used.

I. INTRODUCTION

One means of detecting radioactive material is to count the
gamma–ray photons emitted from it. Such a photon–counting
detector, hereafter referred to as a non–imaging detector, is
limited by its inability to obtain information about the direction
of incoming photons. It is reasonable to hypothesize that
directional information can improve detection capability by
distinguishing between photons from a localized source and
photons from a distributed background. A common assumption
in the field of security imaging is that sources of radiation are
small, so they appear point–like to a detector [1]. In light of
this, we consider the problem of detecting a point–source in
a known diffuse background. In this work, we examine the
detection performance using the generalized likelihood ratio
test (GLRT).

When performing detection using the GLRT with a
position–sensitive Compton imaging detector in a known back-
ground, a particular experiment found that imaging informa-
tion did not significantly improve detection performance over
merely counting received photons [2]. In light of the numerous
modalities that contain some form of imaging information,
we seek to show theoretically how the information added by
imaging capability affects detection performance. The goals
of this work are to explain previous empirical results, such as
those contained in [2], and guide the design of future detectors.

The question of whether or not imaging information im-
proves detection performance was addressed in [3] in the
context of coded–aperture imaging systems. If the background
intensity is known, reference [3] argued that imaging infor-
mation does not improve the signal–to–noise ratio (SNR),
therefore imaging information does not improve detection
performance. However, if the background intensity is un-
known, imaging may improve SNR [3] and thus detection
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performance by providing a means to separate the otherwise
indistinguishable source and background photons. The analysis
in this paper differs from that of [3] because we treat the
problem from a detection task–based point of view. We analyze
the task of source detection using the asymptotic performance
of the GLRT applied to photon counting imaging and non–
imaging detectors. To the best of our knowledge, there is no
other literature analyzing the impact of imaging capability on
detection performance for photon–counting detectors.

In this work, we quantify detection performance using the
area under the receiver operating characteristic (AUC). This
metric is independent of any particular threshold value and is
a measure of the overall detectability [4].

The novel contribution of this work is the task–based anal-
ysis of the asymptotic performance of the GLRT for detecting
a single source in background for photon counting detectors
with and without imaging capability. We give Theorem 1,
which states that in a known background, a uniform–sensitivity
detector with imaging capability always has better detection
performance asymptotically in terms of AUC than a non–
imaging detector of equal sensitivity. This theorem, to our
knowledge, is the first to answer the question of whether or not
imaging capability improves detection performance from the
task–based point of view of the GLRT when the background is
known. Our analysis also provides an expression that quantifies
how much imaging capability increases the AUC.

II. MATHEMATICAL BACKGROUND

The model described in this section is general enough to
describe any system that records a Poisson–distributed number
of events, where the events are independent and can be
described by a vector of attributes. This model accurately de-
scribes position–sensitive Compton detectors, coded aperture
detectors, and scintillator arrays.

A. Measurement Model

Let r̃ = (r1, r2, . . . , rJ ) be a vector of recorded attributes
of photon interaction events. Each element ri of r̃ is itself a
vector of attributes describing the ith event. An example of a
detector that one can describe with this model is a position–
sensitive Compton detector. A Compton detector records a
Poisson–distributed number J of gamma–ray photons. Each
detected photon interacts one or more times inside the detector
and the detector records these interaction locations. For this
system, the vector ri is populated with the interaction locations
of the ith recorded photon. The assumption that the attributes
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of recorded events are independent is reasonable provided the
count rates are low enough to avoid the dead time effect [5].

In the detection problem considered here, the goal is to de-
cide whether or not a point–source is present in an environment
with some background. The two parameters characterizing the
source are the intensity α ∈ [0,∞) having units of emissions
per unit time and source position φ ∈ Φ. In the 3D far–field,
an example for the set Φ is [0, 2π) × [0, π], which represents
all possible azimuth and polar angles on a sphere. Since we
are only considering uniform–sensitivity detectors, the system
sensitivity is independent of source position and we denote it
by s0. The mean number of background counts is denoted by
λb and is assumed known. We define the vector θ to be the
vector of all unknown parameters,

θ = (α,φ), (1)

and D to be the event that a photon is recorded.
Let p(r|D;θ) denote the distribution of recorded attributes

r ∈ R, where R is the set of all possible event attributes, pa-
rameterized by θ. To characterize imaging capability, we intro-
duce two probability distributions: pS(r|D;φ) and pB(r|D),
which are the distributions of recorded event attributes r
given that they are detected and come from the source and
background, respectively. The overall distribution of recorded
attributes (given that an event is detected) is p(r|D;θ), and it
is a mixture of pS(r|D;φ) and pB(r|D) given by

p(r|D;θ) =
λbpB(r|D) + αs0pS(r|D;φ)

λb + αs0
. (2)

As shown in [5], the likelihood of θ is

p(r̃;θ) =
J∏

i=1

p(ri|D;θ)e−J̄(θ)J̄(θ)J/J !, (3)

and the number of recorded photons obeys the Poisson distri-
bution

J ∼ Poisson
(
J̄(θ)

)
, (4)

with mean given by

J̄(θ)
�
= E [J ] = τ (λb + αs0) ,

where τ denotes the known scan time.
We can make the concept of an imaging detector more

concrete by the following definition:

Definition 1. A detector is a non–imaging detector if and only
if pS(r|D;φ) = pB(r|D) almost everywhere1 for all φ ∈ Φ.

Definition 1 says that in a non–imaging detector, the dis-
tribution of event attributes is independent of whether or not
the event originated from the source. Otherwise we call it
an imaging detector. Note that with this definition of a non–
imaging detector, the source and background spectra are either
the same or at least have the same effect on the distribution
of the recorded attributes.

1Throughout, “almost everywhere” means with respect to the distribution
of r in (2)

B. Generalized Likelihood Ratio Test (GLRT)

In the source detection problem, we would like to discern
between two hypotheses:

H0 : α = 0,
H1 : α > 0.

(5)

The GLRT is a common method of choosing between two
hypotheses when one or more of the hypotheses depend on
unknown parameters [6]. We can write the GLRT as

2 log Λ
H1

≷
H0

γ,

where the test statistic is

Λ
�
=

maxα,φ p(r̃; (α,φ), H1)
maxφ p(r̃; (α = 0,φ), H0)

. (6)

To calibrate the test threshold γ and analyze the perfor-
mance of the detector, one must determine the distribution of
Λ. In the case of (5), the distribution of Λ is complicated
because under H0, the parameter α lies on the boundary of
the parameter space [7]. To simplify the analysis and give
intuition, instead of (5), we consider the two–sided test

H0 : α = 0
H1 : α �= 0,

(7)

which is also the basis of the analysis in [8]. When the test
is treated with the two–sided formulation in (7), it is shown
in [6, pp. 239-240] that the asymptotic distribution of the test
statistic is given by

2 log (Λ) ∼
{

χ2
1 (η) H1

χ2
1 (0) H0,

where χ2
1(η) denotes the non–central chi-square distribution

with one degree of freedom and noncentrality parameter η.
For the model (3), the noncentrality parameter is

η = α2
(
F−1 (θ)[1,1]

)−1

, (8)

where F (θ) is the Fisher Information Matrix. The next sec-
tion uses (8) to determine how imaging information affects
detection performance.

III. EFFECT OF IMAGING ON DETECTION PERFORMANCE

As illustrated in Figure 1, the AUC of the GLRT for (7) is a
monotone function of the noncentrality parameter η in (8), so
showing that imaging capability improves AUC is equivalent
to showing that imaging capability increases η. We derive
the Fisher information for an imaging detector and show that
imaging always improves detection performance by increasing
the AUC when detector sensitivity is uniform.

The noncentrality parameter in (8) depends only on the [1, 1]
component of the inverse of F (θ). To facilitate the analysis
of F (θ), we define the block components of the matrix as
follows:

F (θ) =
[

F[1,1] FT
[2,1]

F[2,1] F[2,2]

]
, (9)

637

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 19,2010 at 11:19:27 UTC from IEEE Xplore.  Restrictions apply. 



0 5 10 15 20
0.5

0.6

0.7

0.8

0.9

Noncentrality parameter η

A
U

C

Fig. 1: AUC of GLRT (7) versus noncentraltity parameter η
of the asymptotic distribution of the GLRT.

where F[1,1] is 1×1, F[2,1] is dim(φ)×1, and F[2,2] is dim(φ)×
dim(φ).

A. Fisher Information Expressions

A non-imaging detector is neither capable of estimating φ
nor distinguishing source and background events of the same
energy because it does not record any position information,
so the Fisher information is a scalar in this case. Using the
model in (3) and (4), one can show that the log–likelihood for
the non–imaging case is

L (θ) = J log(τ(λb + αs0)) − τ(λb + αs0),

for which the Fisher information is given by

F̃(θ)
�
=

τs2
0

λb + αs0
. (10)

Note that increasing the scan time τ increases the Fisher
information, whereas increasing the background rate λb de-
creases the Fisher information, consistent with intuition. It
is somewhat counter–intuitive that the Fisher information
decreases as source intensity α increases, but the AUC still
increases as a function of α because of the α2 term in (8).

To help express the Fisher information matrix (9) for an
imaging detector, we first define the following functions of r:

g1(r) = pS(r|D;φ)
g2(r) = ∇φ(s0pS(r|D;φ)).

Note that g1 : R → R, and g2 : R → R
dim(φ). Using (2),

(3), and (4), one can show that the Fisher Information for an
imaging detector is given by

F (θ) = F̃(θ)

⎡
⎣ K[1,1]

αKT
[2,1]

s0
αK[2,1]

s0

α2K[2,2]

s2
0

⎤
⎦ , (11)

where

K[i,j]
�
= E

[
gi(r)gT

j (r)
p(r|D;θ)2

]
, (12)

provided that the expectation integral and the gradient with
respect to the parameters are interchangeable.

B. Effect of Imaging Capability for a Uniform Sensitivity
Detector with Known Background

The main result of this section, given by Theorem 1,
is that the detection performance of a uniform–sensitivity
imaging detector is greater than that of a uniform sensitivity
detector without imaging capability. The AUC of an imaging
detector is greater than that of a non–imaging detector if the
noncentrality parameter of the asymptotic distribution under
H1 in (8), is larger for an imaging detector. Evaluation of (8)
for an imaging and non–imaging detector shows that imaging
capability improves the AUC if and only if

(F(θ)−1
[1,1])

−1 ≥ F̃(θ). (13)

Theorem 1 shows that this inequality holds for all uniform–
sensitivity detectors. The proof will be given in the full version
of this work [9].

Theorem 1. For a uniform sensitivity imaging detector in a
known background, (F−1(θ)[1,1])−1 > F̃(θ), i.e., the recipro-
cal of the [1, 1] component of the inverse Fisher Information
Matrix (9) for an imaging detector is greater than that of
a non–imaging detector (10). Therefore, the asymptotic AUC
for an imaging detector is greater than the asymptotic AUC
of a non–imaging detector in a known background when both
detectors have uniform sensitivity.

In the case where K[2,1] = 0, which is typical in uniform–
sensitivity detectors, one can show that

(F−1(θ)[1,1])−1 = K[1,1]F̃. (14)

This says that imaging increases the noncentrality parameter
η in (8) by the factor K[1,1] in (11).

In practice, sensitivity of gamma–ray detectors is rarely
uniform. When sensitivity is nonuniform, the source position
becomes a nuisance parameter and can degrade detection per-
formance. One can evaluate the Fisher information matrix (11)
for a particular detector geometry to evaluate its asymptotic
detection performance [9].

IV. NUMERICAL RESULTS

In this section, we numerically evaluate the Fisher infor-
mation (11) for 2D circular detectors of radius r to illustrate
Theorem 1, because a 2D circular detector has uniform sen-
sitivity. In 2D, we measure the far–field source position by
its angle counterclockwise from the x-axis. In this case, the
position parameter vector φ is a scalar and we denote it by φ.
The set of possible source positions is Φ = [0, 2π).

A. Setup for Numerical Calculations

For simplicity, we assume that these detectors only record
single photon interaction events. For each recorded event,
the detector records the position of the interaction (x, y).
The attribute vector ri is the interaction position of the ith
event. Although this hypothetical detector does not necessarily
represent a practical system, the attribute vector r has length 2,
so one can practically compute the components of the Fisher
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information (12) numerically using the Riemann approxima-
tion

K[i,j] =
∫
R

gi(x, y)gT
j (x, y)

p(x, y|D;θ)2
p(x, y|D;θ)dxdy

≈
nx∑
i=1

ny∑
j=1

(xi,yi)∈R

gi(xi, yj)gT
j (xi, yj)

p(xi, yj |D;θ)
ΔxΔy,

where i = 1, 2, . . . , nx, j = 1, 2, . . . , ny , and the points
(xi, yi) are samples of R with uniform spacing of Δx in the
x-direction, and Δy in the y-direction.

The probability density of interaction locations is governed
by the Beer-Lambert law, which is also known as the atten-
uation law [10, pp. 54-56]. This means that the density of
interaction events at a particular point inside the detector is
a decreasing function of the length of material that a photon
must pass through to reach that point. The number of photons,
on average, that interact in a given length of material is
parameterized by μ, the material linear attenuation coefficient
at the energy of incoming gamma-rays, which is assumed to
be known. The attenuation coefficient serves as a measure of
detector quality, and is related to its position resolution. The
interaction probability distribution is given by

p(x, y|D;θ) =
1

l(φ)Pr(D)
μe−μdi(x;y,φ) (x, y) ∈ R, (15)

where di(x; y, φ) is the distance that the photon must travel
along the line from the source to the position of interaction,
and l(φ) is the largest distance between any two lines with
slope tan(φ) that pass through the detector, which is 2r for
this detector. The exact expression for di(x; y, φ) is

di(x; y, φ) =
√

r2 − (x sin φ − y cos φ)2−(x cos φ + y sin φ) .

One can interpret this formula as a clockwise rotation of angle
φ to move the point of interaction to the x-axis. Then the
distance from the edge of the detector is the difference between
the intersection of the detector boundary with the x-axis and
the x-coordinate of the interaction location. The quantities
described above are illustrated in Figure 2 for the 2D circular
detector.

Fig. 2: Diagram of 2D circular detector.

It is difficult to define the intrinsic position resolution of
these systems, so we report the angular uncertainty measured
by the square root of the Cramer–Rao lower bound on the
position estimate

√
(F(θ)−1)[2,2], where F(θ) is defined in

(11).

B. Results for 2D Circular Detector

Figure 3 shows the AUC, the imaging gain factor
K[1,1] from (11), and angular uncertainty as a function of
attenuation–radius product for a circular detector. The quan-
tity ατ represents the expected number of photons emitted
from the source during the scan and λbτ represents the ex-
pected number of background photons recorded. The expected
number of source photons recorded is given by ατs0. As
guaranteed by Theorem 1, the AUC of the imaging detector
is always higher than that of the the non–imaging detector.
Figure 3d shows s0 as a function of μr to aid interpreting
Figure 3a. Recall that K[1,1] is the multiplicative improvement
in the noncentrality parameter of the asymptotic distribution
of the GLRT under H1, as expressed in (14). As μr increases,
the angular uncertainty decreases and the difference in AUC
between the detectors with and without imaging information
increases. Figures 3a and 3b illustrate that as the detector
provides more precise imaging information, the improvement
in detection performance due to imaging information increases
even when the background is known.

Figure 4 shows the AUC for a circular uniform–sensitivity
detector as a function of source intensity for a fixed back-
ground intensity. The difference between the AUC for the
imaging and non–imaging detector is greatest when the
source–to–background ratio is near 1:1. For low source–to–
background ratios, the source is difficult to detect with either
detector, and when the source–to–background ratio approaches
infinity, the source is so detectable that imaging information
provides little additional benefit. The detector in Figure 4 is
identical to that in Figure 3d, so their sensitivities are equal.
Again, the imaging detector always has higher AUC than the
non–imaging detector as expressed in Theorem 1.

V. CONCLUSION AND FUTURE WORK

We investigated how imaging capability impacts the detec-
tion performance in a photon counting detector. In the case
of a uniform–sensitivity detector in known background, we
showed in Theorem 1 that imaging always improves detection
performance in terms of asymptotic AUC.

This work focused on evaluating the detection performance
of photon counting imaging detectors and comparing it to the
performance of non–imaging detectors using ROC analysis.
Since in addition to accurate detection, accurate localization
is important in practice, future work should examine the
localization ROC (LROC) of gamma–ray detectors. LROC
analysis has previously been applied to study detection and
localization performance in medical imaging [11]. Future work
could extend this analysis to networks of imaging sensors.
Since non–imaging sensors are typically much less expensive,
future work will lay the foundation for cost–benefit analysis
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Fig. 3: Various quantities for a circular uniform–sensitivity
detector with λbτ = ατ = 10.

for use of imaging detectors for networked applications. The
numerical calculations considered single a photon energy, and
future work should consider energy spectra [12]. The numer-
ical results were for single photon interaction detectors, and
future work would extend these results to Compton detectors,
which can record multiple interactions.
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