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ABSTRACT

The most recent generation of X-ray CT systems can

collect dual energy (DE) sinograms by rapidly switching the

X-ray tube voltage between two levels for alternate projec-

tion views. This reduces motion artifacts in DE imaging,

but yields sinograms that may be angularly under-sampled.

This paper describes an iterative algorithm for statistical im-

age reconstruction of material component images (e.g., soft

tissue and bone) directly from such under-sampled DE data,

without resorting to the interpolation operations required by

conventional DE reconstruction methods.

Keywords: model-based image reconstruction, dual-

energy X-ray computed tomography, penalized likelihood.

1. INTRODUCTION

In the field of X-ray CT, there is increasing interest in en-

hancing the information provided in the images through dual-

energy imaging. Dual energy (DE) CT imaging was first pro-

posed over 30 years ago [1], but only recently became avail-

able for routine use in clinical CT systems. Various tech-

nological advances have brought renewed interest in DE CT,

such as CT systems with two X-ray sources and photon count-

ing detectors with energy selectivity. Very recently, commer-

cial systems with fast kVp switching have become available,

extending an idea that previously existed only in prototype

systems [2]. This paper describes a model-based approach to

DE image reconstruction for such systems.

The conventional approach to DE CT imaging is the “dual

rotate” mode where the source is rotated around the patient at

one source voltage setting to collect a full sinogram, and then

the source voltage is changed (as quickly as the hardware per-

mits) and the source is rotated around again with the new kVp

to collect a second full sinogram. Using these two full sino-

grams, one can reconstruct separate images of two material

components (such as soft tissue and bone) using sinogram

material decomposition followed by FBP image reconstruc-

tion [1]. Model-based image reconstruction methods for fully

This work was supported in part by NIH/NCI grant 1R01CA115870.

sampled sinograms have also been proposed under monoen-

ergetic [3, 4] and polyenergetic models [5, 6]. A drawback

of this conventional “dual rotate” mode of DE CT is that the

object may move between the two acquisitions, leading to in-

consistencies between the two sinograms that can manifest as

severe artifacts in the reconstructed images.

To reduce motion effects, the “fast kVp switching” mode

alternates between high and low X-ray source tube voltages

for the projection views. This allows DE data to be collected

in a single rotation, so the motion artifacts should be compara-

ble to those of conventional CT imaging. Modern CT systems

rotate in less than 0.5 seconds, and collect about 1000 projec-

tion views, so the X-ray tube high voltage must be switched

at kHz rates repeatably, which is a challenge that has been

met only recently. In this switching mode, two sinograms are

collected with only half as many projection views as could be

collected otherwise. Conventional sinogram domain DE de-

composition methods require each ray to be measured twice

by two different spectra (two different tube voltages), but in

the fast switching mode, the even projection views are at one

voltage and the odd views are at the other voltage.

The typical solution to this problem in fast switching DE

imaging is to interpolate both sinograms in the angular direc-

tion to fill in the “missing” views. Then one can apply con-

ventional DE decomposition followed by FBP reconstruction.

However, such interpolation might compromise spatial reso-

lution. Furthermore, DE decomposition is a noise-amplifying

process, so statistical image reconstruction methods have the

potential to improve image quality significantly relative to

FBP in DE imaging [5]. This paper proposes a model-based

image reconstruction method for DE CT that reconstructs the

two material component images (e.g., soft tissue and bone)

directly from the under-sampled sinograms without any inter-
polation. We report preliminary simulation results suggest-

ing that this iterative method has the potential to improve im-

age quality compared to the conventional interpolate/FBP ap-

proach.
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2. DUAL-ENERGY RECONSTRUCTION

2.1. Models

2.1.1. Measurement model

Let ymi denote the CT measurement for the ith ray for the

mth incident spectrum, m = 1, ..., M0, i = 1, ..., Nd. For

DE CT, M0 = 2. The measurement means are related to the

line-integral projections of the object’s attenuation via Beer’s

law. We assume that the measurements are random variables

with the following ensemble means:

ȳmi �
∫

Imi(E) exp
(
−

∫
Li

μ(�x, E) d�

)
dE + rmi, (1)

where
∫
Li

·d� denotes the line integral along the ith ray, and

μ(�x, E) denotes the linear attenuation coefficient (LAC) of

the object being scanned at the spatial location �x, Imi(E) de-

notes the product of the mth incident source spectrum and the

detector gain for the ith ray, and rmi denotes additive back-

ground contributions such as room background, dark current,

and scatter. We treat Imi(E) and rmi as known nonnegative

quantities [7–9].

2.1.2. Object model

The measurements are finite whereas μ is a continuous func-

tion of spatial location �x and energy, E . Thus for reconstruc-

tion we parameterize the LAC using basis functions that are

separable in the spatial and energy dimension as follows [1]:

μ(�x, E) =
L0∑
l=1

Np∑
j=1

βl(E)bj(�x)ρlj , (2)

where βl(E) denotes the energy-dependent mass-attenuation

coefficient (MAC) of the lth material type (units cm2/g),

{bj(�x)} are (unitless) spatial basis functions such as square

pixels, and ρl = (ρl1, ..., ρlNp) denotes the vector of un-

known density values of lth material type (units g/cm3) for

each of the Np voxels. In DE CT, we usually choose L0 = 2
e.g., soft tissue (water) and bone. We use tabulated MAC

values for water and bone [10].

Most conventional approaches to DE CT imaging have

estimated the object, {ρl}Lo

l=1, from fully sampled measure-

ments, {ymi}Nd
i=1. In this paper, the goal is to reconstruct the

object from under-sampled sinograms that are collected by al-

ternating X-ray source voltage over a single rotation. There-

fore, the proposed method estimates {ρl}L0
l=1 from {ymi}i∈Im

where the sets of indexes {Im}M0
m=1 are a partition of whole

index set I = {1, ..., Nd}. In particular, for DE CT with

fast kVp switching between source voltages, I1 and I2 cor-

respond to the rays in the odd and even projection views re-

spectively. Using (1), (2), we rewrite the ensemble means of

the measurements as follows:

ȳmi(ρ) = Imie−fmi(ρ) + rmi (3)

fmi(ρ) � − log vmi(ρ) (4)

vmi(ρ) �
∫

pmi(E)e−β(E)·si(ρ) dE ,

for m = 1, ..., M0, l = 1, ..., L0, and i ∈ Im, where Imi =∫
Imi(E) dE denotes the total intensity for the mth incident

spectrum and the ith ray, and we define the sinogram vector

si as follows:

pmi(E) � Imi(E)/Imi,

sil(ρ) � [Aρl]i,
β(E) � (β1(E), ..., βL0(E)),
si(ρ) � (si1(ρ), ..., siL0(ρ)),

where A denotes the Nd×Np system matrix having elements

aij �
∫
Li

bj(�x) d�. (5)

2.2. Conventional Interpolation/FBP approach

The usual estimate of the fmi values is to invert (4):

f̂mi � − log
(

smooth
{

Ymi − rmi

Imi

})
, for i ∈ Im, (6)

where radial smoothing is often included to reduce noise, e.g.
[11]. Using angular interpolation, one can reconstruct f̂mi

for all i = 1, 2, ..., Nd. For the results shown below, we sim-

ply averaged the two nearest projection views for interpola-

tion. Then one applies conventional DE decomposition [1],

followed by FBP reconstruction. This approach is fast but

suboptimal.

2.3. Penalized Weighted Least Square (PWLS) approach

Instead of estimating ρ by using interpolation, we propose to

estimate ρ directly by including a spatial roughness penalty

R(ρ) in the penalized-likelihood cost function:

ρ̂ = arg min
ρ≥0

Ψ(ρ) (7)

Ψ(ρ) �
M0∑

m=1

∑
i∈Im

wmi

2
(f̂mi − fmi(ρ))2 + R(ρ), (8)

where wmi denotes weights that we define as follows:

wmi = Ymi, for i ∈ Im. (9)

These weights are a reasonable choice because CT measure-

ments are approximately Poisson distributed and in the ab-

sence of smoothing the approximate variance of f̂mi is

Var(f̂mi) ≈ Var(Ymi)
(ȳmi − rmi)2

. (10)
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Note that (8) uses only the measured rays (i ∈ Im); no inter-

polation is used. The regularizing penalty term in (8) is given

by the following:

R(ρ) =
L0∑
l=1

Np∑
j=1

∑
k∈Nj

ψ(ρlj − ρlk), (11)

where ψ is a potential function and Nj is a neighborhood of

pixel j. For ψ we used a hyperbola [12] and the modified

regularizer in [13] to provide uniform spatial resolution. Here

we minimized the cost function in (8) using 100 iterations

of a conjugate graduate method with a monotone line search

technique [14]. This could be accelerated greatly by using

ordered subsets [15]. We initialized the iterations using the

object estimated by the interpolation/FBP method in Section

2.2.

3. RESULTS

To evaluate the feasibility of the proposed methods for image

reconstruction, we performed a computer simulation of dual-

energy CT scans. The reconstructed images were 512 × 512
with 0.1 × 0.1 cm2 pixel size and the projection space was

888 radial samples × 984 angular views. We applied the

conventional dual-energy interpolation/FBP reconstruction

method, and the proposed regularized PWLS method with

source voltages 80kVp and 140kVp. We investigated 10

different numbers of incident photons per ray from 1 × 105

to 1 × 106.

Fig. 1 shows the density maps of the components: soft

tissues and bone mineral and the estimated object of the two

methods with I0 = Imi = 105, i ∈ Im. The PWLS images

have reduced streak artifacts and lower noise than the conven-

tional FBP images.
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Fig. 2. NRMSE of estimated density maps: Interpola-

tion/FBP method, and proposed PWLS algorithm.

Fig. 2 shows that the proposed PWLS method reduces

significantly the NRMSE of the soft tissue and bone images

compared to the conventional interpolation/FBP method.
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Fig. 3. Horizontal profile through the estimated bone images

of the two methods and the true bone image.

Fig. 3 illustrates that the proposed PWLS method has

lower noise than FBP without compromising the spatial reso-

lution near object edges.

For completeness, we also applied the PWLS method to

the interpolated sinogram data. Fig. 1(d) and (h) show their

resulting component images. The global NRMSE of the soft

tissue and bone components were 14.8% and 11.9% respec-

tively, compared to 14.6% and 11.9% for PWLS applied to

the sinograms without interpolation. When implemented effi-

ciently, applying PWLS to interpolated data requires approx-

imately twice the compute time per iteration as PWLS for the

original under-sampled data.

4. CONCLUSION

We presented an iterative regularized PWLS algorithm for DE

CT reconstruction from the type of under-sampled DE data

that is collected by fast kVp switching CT systems. Unlike

other DE CT algorithms, the proposed method estimates ma-

terial component images directly from only half as many pro-

jection views without any interpolation operation. The ex-

periments show that the proposed method yields images with

lower NRMS error than the conventional interpolation/FBP

approach in Fig. 2. Our next step is to evaluate the method

with real data and to investigate penalized-likelihood methods

and to analyze the spatial resolution and noise properties.
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Fig. 1. First column: Two component simulated densities. Second column: Interpolation/FBP method with I0 = 105. Third

column: Regularized PWLS method with I0 = 105. Fourth column: Regularized PWLS method with interpolated DE data.
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