
A simple penalty that encourages local invertibility and considers
sliding effects for respiratory motion

Se Young Chuna, Jeffrey A. Fesslera and Marc L. Kesslerb

aElectrical Engineering and Computer Science,
bRadiation Oncology,

The University of Michigan, Ann Arbor, MI

ABSTRACT

Nonrigid image registration is a key tool in medical imaging. Because of high degrees of freedom in nonrigid transforms,
there have been many efforts to regularize the deformation based on some reasonable assumptions. Especially, motion
invertibility and local tissue rigidity have been investigated as reasonable priors in image registration. There have been
several papers on exploiting each constraint separately.

These constraints are reasonable in respiratory motion estimation because breathing motion is invertible and there are
some rigid structures such as bones. Using both constraints seems very attractive in respiratory motion registration since
using invertibility prior alone usually causes bone warping in ribs. Using rigidity prior seems natural and straightforward.
However, the “sliding effect” near the interface between rib cage and diaphragm makes problem harder because it is not
locally invertible. In this area, invertibility and rigidity priors have opposite forces.

Recently, we proposed a simple piecewise quadratic penalty that encourages the local invertibility of motions. In this
work we relax this penalty function by using a Geman-type function that allows the deformation to be piecewise smooth
instead of globally smooth. This allows the deformation to be discontinuous in the area of the interface between rib
cage and diaphragm. With some small sacrifice of regularity, we could achieve more realistic discontinuous motion near
diaphragm, better data fitting error as well as less bone warping. We applied this Geman-type function penalty only to the
x- and y-direction partial derivatives of the z-direction deformation to address the sliding effect. 192 × 128 × 128 3D CT
inhale and exhale images of a real patient were used to show the benefits of this new penalty method.

Keywords: nonrigid image registration, piecewise smooth deformation, B-spline, bone rigidity, Geman function, regular-
ization method

1. INTRODUCTION

Nonrigid image registration provides more flexible image matching but suffers by its ill-posedness and resulting in unre-
alistic deformations.1 There has been lots of research on regularizing or constraining deformations with reasonable prior
information such as smoothness of deformations, motion invertibility and tissue rigidity.

Motion invertibility constraint has been one of the reasonable constraints, but ensuring it has been challenging and
computationally expensive. Since it is challenging to enforce motion inversibility on the continuous domain, there have
been some relaxations of the problem for practical implementations: 1) enforcing motion invertibility only at discrete spa-
tial points instead of on continuous image domain, 2, 3 2) using simpler deformation models such as linear deformations, 4, 5

and 3) using simple, but restricted sufficient conditions . 6–8

Tissue rigidity constraint has been another reasonable constraint in nonrigid image registration. 9–12 Some medical
imaging modalities provide tissue rigidity information that can be incorporated well into the tissue rigidity constraint.

In respiratory motion image registration, it is natural to apply both invertibility and tissue rigidity constraints since
respiratory motion is invertible - cycle of inhale and exhale - and there are some rigid structure such as bones. However,
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Figure 1. Coronal, sagittal and axial views of 3D exhale and inhale images of a real patient. Connectivity between diaphragm and rib
bones is not preserved since diaphragm is sliding down while back rib bones remain at the similar locations.

applying both priors to respiratory motion estimation problem causes a conflict near the interface between rib cage and
diaphragm area. Figure 1 shows that the connectivity between rib bones and diaphragm is not preserved due to sliding
motion of diaphragm. This implies that enforcing invertibility alone will not be able to describe the motions of both
diaphragm and rib bones. We will see experiment results in Section 3.

This paper proposes to use both a simple invertibility penalty 8, 13 and a tissue rigidity penalty 10 and it also addresses
the motion discontinuity near the interface between rib cage and diaphragm areas due to sliding motion. We relax a simple
penalty that encourages local invertibility8, 13 by using a Geman-type function14, 15 so that the invertibility constraints can
be reduced automatically around sliding area.

2. METHOD

2.1 Nonrigid image registration and local invertibility

A 3D nonrigid transformation T : R3 → R3 can be written

T (r) = r + d(r), (1)

where r = (x, y, z) and d(r) is the deformation. We model the 3D deformation d = (dx, dy, dz) using a tensor product of
nth-order B-splines

dq(r) =
∑

i,j,k

cq
i,j,kβ

( x

mx
− i

)
β
( y

my
− j

)
β
( z

mz
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)
, (2)

where q ∈ {x, y, z}, β is a nth-order B-spline basis, and mq are knot spacings. The goal in image registration is to estimate
the deformation coefficients c = {cq

i,j,k} by maximizing a similarity metric Ψ

ĉ = argmax
c

Ψ[g(·), f(T (·; c))] (3)

where g(r) and f(r) denote two 3D images. An unconstrained maximization in (3) will lead to physically implausible
deformation estimates. We would like to constrain the transformation to be locally invertible. In principle, this could be
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done by using the following “ideal” constraint set:

c ∈ C0 ≡ {c : det∇T (r) > 0, ∀r}. (4)

However, this constraint is hard to enforce so we relax this condition to have practical implementations . 2–8, 13

2.2 A simple penalty that encourages local invertibility

We recently proposed the following sufficient condition that ensures local invertibility. 8, 13

THEOREM 1. Suppose 0 ≤ kq < 1
2 for q ∈ {x, y, z}. Define:

C4 ≡ {c :− mxkx ≤ cx
i+1,j,k − cx

i,j,k ≤ mxKx,

− myky ≤ cy
i,j+1,k − cy

i,j,k ≤ myKy,

− mzkz ≤ cz
i,j,k+1 − cz

i,j,k ≤ mzKz,

|cq
i+1,j,k − cq

i,j,k| ≤ mqkq for q = y, z,

|cq
i,j+1,k − cq

i,j,k| ≤ mqkq for q = x, z,

|cq
i,j,k+1 − cq

i,j,k| ≤ mqkq for q = x, y, ∀i, j, k}.

In (2), if c ∈ C4 then the Jacobian determinant of T satisfies the bounds

1 − (kx + ky + kz) ≤ det∇T (r) ≤ (1 + Kx)(1 + Ky)(1 + Kz)
+ (1 + Kx)kykz + kx(1 + Ky)kz + kxky(1 + Kz)

for ∀r ∈ R3. Moreover, if kx + ky + kz < 1, then the transformation (1) is locally invertible everywhere.

Based on Theorem 1, we proposed the following simple penalty that encourages local invertibility:

RI(c) =
∑

q∈{x,y,z}

∑

i,j,k

[
p(cq
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(5)

where ζq,s
1 = −mqkq for ∀s ∈ {x, y, z} , ζq,s

2 = mqkq for s �= q and ζq,s
2 = mqKq for s = q. The function p is defined

by

p(t; ζ1, ζ2) =

⎧
⎪⎨

⎪⎩

1
2 (t − ζ1)2, t ≤ ζ1

0, ζ1 < t ≤ ζ2

1
2 (t − ζ2)2, otherwise.

(6)

All parameters kq , Kq are determined based on Theorem 1 and kx +ky +kz < 1 allows (5) to be a penalty that encourages
local invertibility. 8, 13

2.3 A tissue rigidity penalty

Staring et al.11 and Modersitzki12 defined a rigid transformation as follows.

DEFINITION 1. A transformation T (r) is rigid if it is linear, i.e., ∂2
i1,i2

T = 0 for all i1, i2 ∈ {x, y, z}, orthogonal, i.e.,

∇TT∇T = I , and orientation preserving for ∀r ∈ R3, i.e., det∇T = 1.

In this paper, we are applying an invertibility constraint together and in this case, orthogonal property implies ori-
entation preserving. We also do not use linear property because it is computationally expensive (second order partial
derivatives) and it does not seem to be a dominant term according to the experiment of Staring et al. 11 Therefore, we only
use orthogonal property which is equivalent to Loeckxx et al. 9 and Ruan et al.10 We use the following rigidity penalty
function

RR(c) =
∑

r

γ(f(r))||∇T (r)T∇T (r) − I||2Frob, (7)

where || · ||Frob is a Frobenius norm and γ(x) = tanh((x − 1200)/10)/2 + 1/2.
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Figure 2. A quadratic-like penalty for invertibility constraint and a Geman-like penalty to relax invertibility constraint.

Ruan et al.10 calculates the Jacobian values on all image voxels and Staring et al. 11 suggested to calculate only on
all knot points instead of all image voxels. This choice depends on the scale of images. If a lower resolution image can
capture the fine bone structure well, then we may calculate Jacobian values only on all knot points. However, if the original
image has poor resolution, then we may have to get all Jacobian values on all image voxels. We may calculate only on
image voxels whose γ function value is larger than a certain threshold value and it may lead to save lots of computation
time since bones are very small proportion compared to the whole body.

2.4 A proposed penalty that considers sliding effects

In respiratory motion, sliding motion of diaphragm occurs mainly in the z-direction deformation and there are discontinu-
ities along x- and y- directions of the z-direction deformation. Therefore, we relax only the invertibility penalty for x- and
y- differences of z-direction deformation by using a Geman-type function so that it naturally accomodates the area of large
differences between adjacent motion parameters. Specifically, we replace some of the p(·) terms in (5) as follows:
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where

g(t; ζ1, ζ2) =
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1
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(9)

Figure 2 depicts p and g functions.

2.5 Graduated non-convexity (GNC) method

Our proposed penalties change the problem in (3) as follows:

ĉ = arg max
c

Ψ[g(·), f(T (·; c))] − βIR̃I(c) − βRRR(c) (10)

where R̃I(c) is the modification of (5) according to (8). The proposed penalty function (9) is non-convex and it may cause
local minima during the optimization. Blake et al. describe a graduated non-convexity method as an optimization method
with Geman-type function.15 It changes the shape of a function g from an almost convex function to a Geman function
as optimization proceeds. We used a graduated non-convexity method combined with a conjugate gradient method to
optimize the cost function (10).
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Table 1. Negative Jacobian determinant values and data fitting RMS error
Method # of (-) Jacobian determinant Data fitting RMS error (HU)

No constraint 122597 30.59
Invertibility 0 36.26

Rigidity 0 38.13
Relaxed 341 38.11
Source 3145728 207.28

3. RESULTS

3.1 Experiment setup

We investigated 192 × 128 × 128 3D CT inhale and exhale images of a real patient shown in Figure 1. We used 3rd-order
B-spline basis for deformation and deformation knots for every 4 voxels. Sum of squared difference was used for data
fitting term. We did not use a multi-resolution for this experiment since lower resolution image seemed to lose detailed
information about rib cage and our rigidity penalty did not seem to work well with poor resolution information. We
performed 300 iterations with 4 cycles of GNC15 and a conjugate gradient method.

3.2 Local invertibility and image matching

Figure 3 shows the deformed images for each method. No constraint case should be the best case in terms of matching
deformed image to target image. The rest of the results of each method shows plausible deformed images. Table 1 shows
these image matchings in a quantitative way. The data fitting RMS error of and between source and target images is 207.28
HU and no constraint case results in 30.59 HU after 300 iterations. However, It also results in 122597 voxel points of
negative Jacobian determinant values among 3145728 voxels. Figure 4 shows projection views of these negative Jacobian
determinants.

Applying invertibility penalty8, 13 (Invertibility) alone and both invertibility and rigidity penalties (Rigidity) achieved 0
negative Jacobian determinant value. However, due to constraints applied, the data fidelity RMS error values are higher than
no constraint case. Our proposed method (Relaxed) has 341 negative Jacobian determinant values among 3145728 voxels.
This is natural because we intend to allow discontinuities near the interface between diaphragm and rib cage. Figure 4
(right) shows that the discontinuities appear near the area we intended in most of the cases. This method also achieved a
better data fidelity RMS error value (38.11 HU) than Rigidity method (38.13 HU) since we relaxed an invertibility penalty.

3.3 Improved bone registration

Figure 3 (No constraint) shows a deformed image very close to an original target image. Bones near diaphragm in In-
vertibility case and Rigidity case show clear bone warps due to sliding motion of diaphragm. We chose rigidity penalty
parameter according to our proposed method, so it is too weak to make bones corrected in the presence of strong invertibil-
ity penalty. The right side rib bone in coronal views went downward in both cases, and the spinal bones are stretched due
to sliding effect. However, Figure 3 (Relaxed) shows that these bone moving / stretching are corrected. Figure 5 shows 3D
bone structures for each method and shows that our proposed method corrects bone warps a lot compared to invertibility
method or rigidity method.

3.4 Sliding effect

Figure 6 and 7 show quiver plots of deformations for each method in coronal and sagittal views. No constraint case shows
very localized deformations. However, in the case of invertibility penalty, nearby deformation field was affected by major
downward motion of diaphragm and we can even observe strong arrows outside the body or spine. However, our proposed
method reduced the magnitude of arrows outside the body (and on rib bones) and on spine. It seems more realistic to have
discontinuous motions near these areas.
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No constraint: Coronal No constraint: Sagittal Invertibility: Coronal Invertibility: Sagittal

No constraint: Axial Invertibility: Axial

Ridigity: Coronal Ridigity: Sagittal Relaxed: Coronal Relaxed: Sagittal

Ridigity: Axial Relaxed: Axial

Figure 3. Coronal, sagittal and axial views of 3D deformed images with respect to each penalty: no constraint (top-left), invertibility
(top-right), invertibility and rigidity (bottom-left), relaxed invertibility and rigidity (bottom-right).

4. DISCUSSION

This paper introduced a new relaxed invertibility penalty method as an extension of previous work. 8, 13 We applied it to a
3D respiratory image registration problem with a rigidity penalty which corrected bone warps a lot with a small sacrifice
of invertibility and data fidelity. Estimated deformation near diaphragm seems more realistic in terms of its discontinuity.
However, due to the width of the support of cubic B-splines, cubic B-spline based image registration might not be the
best way to implement tissue rigidity penalty. Rigid constraint near the support of this basis seems to lead less flexible
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Figure 4. Projected coronal, sagittal and axial views of the number of non-positive Jacobian determinant values in no constraint and
proposed method. Most of negative values in proposed method are near inbetween rib cage and diaphragm. Please note that the scales
of each figure are different.

data fitting in the area of tissues near bones. More general settings in rigidity penalty 12 and in sliding treatment16 seem a
promising future work.
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No constraint Invertibility Rigidity Relaxed

No constraint Invertibility Rigidity Relaxed

Figure 6. Zoomed coronal views of deformed images (TOP) by using no constraint, invertibility penalty (Invertibility), invertibility /
rigidity penalty (Rigidity), and relaxed invertibility / rigidity penalty (Relaxed) and their quiver plots (BOTTOM).

No constraint Invertibility Rigidity Relaxed

No constraint Invertibility Rigidity Relaxed

Figure 7. Zoomed sagittal views of deformed images (TOP) by using no constraint, invertibility penalty (Invertibility), invertibility /
rigidity penalty (Rigidity), and relaxed invertibility / rigidity penalty (Relaxed) and their quiver plots (BOTTOM).
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