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Abstract. In functional MRI, head motion may cause dynamic nonlinear field-
inhomogeneity changes, especially with large out-of-plane rotations. This may 
lead to dynamic geometric distortion or blurring in the time series, which may 
reduce activation detection accuracy. The use of image registration to estimate 
dynamic field inhomogeneity maps from a static field map is not sufficient in the 
presence of such rotations. This paper introduces a retrospective approach to es-
timate magnetic susceptibility induced field maps of an object in motion, given a 
static susceptibility induced field map and the associated object motion parame-
ters. It estimates a susceptibility map from a static field map using regularized 
image restoration techniques, and applies rigid body motion to the former. The 
dynamic field map is then computed using susceptibility voxel convolution. The 
method addresses field map changes due to out-of-plane rotations during time se-
ries acquisition and does not involve real time field map acquisitions. 
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1   Introduction 

In functional MRI (fMRI), time series images are acquired with high speed pulse 
sequences that are typically adversely affected by magnetic field-inhomogeneities. As 
a result, these images may be geometrically distorted or blurred, depending on the 
pulse sequence used. A static field-inhomogeneity map may be measured before or 
after a fMRI session to correct for such distortions [1,2], but it does not account for 
magnetic field changes due to head motion during the time series acquisition. To 
address this, several prospective dynamic field mapping techniques have been  
proposed [3,4]. However, they require pulse sequence modifications or high computa-
tional cost. Our work focuses on regularized image restoration methods to approxi-
mate dynamic field maps retrospectively without pulse sequence modifications. 

A previous retrospective approach to approximate a dynamic field map applies 
rigid body transformations to an observed static field map [5], which may be suffi-
cient only in the absence of significant out-of-plane rotations. In the presence of such 
rotations, that method may not be suitable since field-inhomogeneities may change 
nonlinearly [6]. Our approach is to retrospectively estimate the object’s magnetic 
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susceptibility (χ) map from an observed high-resolution susceptibility induced static 
field map using regularized image restoration principles. To compute the dynamic 
field maps, we apply rigid body motion to the χ-map estimate, and apply 3D suscepti-
bility voxel convolution (SVC) [7] to the resultant spatially translated/ rotated χ-map. 
SVC is a deterministic, physics-based discrete convolution model for computing sus-
ceptibility induced field-inhomogeneity given a 3D χ-map. Our main contributions 
include: (i) recognizing and formulating the inverse SVC problem for dynamic field 
map estimation, and, (ii) the implementation of a penalized least squares approach to 
solve the inverse problem. Another way to approximate the object’s χ-map is to seg-
ment a CT volume [6] into air, bone and soft tissue, and apply literature susceptibility 
values to different voxels. However, this may introduce segmentation errors and the 
use of incorrect susceptibility values. Our approach alleviates the burden of ensuring 
good accuracy in both the segmentation process, and the susceptibility values used. 
The approach is demonstrated with realistically simulated noisy 3D field maps of a 
spherical air pocket in water. 

2   Theory 

2.1   Susceptibility Voxel Convolution for Field Map Computation 

Previous work [8] has shown that given an object with K independent closed com-
partments of constant χ values, a Lorentz-corrected boundary element approach to 
computing the z-component of the χ-induced magnetic field map, Bp(r), yields 
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where ẑ  is a unit vector parallel to B0, χk
+ and χk

- denote the susceptibilities outside 
and inside the kth compartment, respectively, Sk is the kth surface, r′ is a surface point, 
dS′ is perpendicular to the surface at r′. In the presence of out-of-plane rotations, the 
orientation of the surfaces with B0, i.e., B0·dS′, changes, thus resulting in nonlinear 
field map changes.  

Susceptibility voxel convolution (SVC) [7] applies Eq. 1 directly to voxels of an 
object. Each voxel is defined as a closed six-sided compartment of uniform suscepti-
bility. The dot product, B0·dS′, is non-zero only for the top and bottom surfaces of a 
voxel. Only the upper surface is used since the superposition principle allows each 
surface to be used only once in computing Bp(x). The values of χk

- and χk
+ are  

obtained from the kth voxel, and the voxel above it in the z direction, respectively. The 
χ-induced field equation now becomes 
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where (xk, yk, zk) is the center of voxel k, and lx, ly, lz are the x, y, and z lengths of a 
voxel. After discretisation in r, Eq. 2 becomes a 3D discrete convolution in space 
domain. The convolution kernel can be written as
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and the SVC impulse response is 
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where (l,m,n) denotes the voxel where Bp is to be calculated, and (l′,m′,n′) denotes 
voxels in the field of view. The discrete convolution of Eq. 2 becomes 
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which can be computed with 
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where *** denotes 3D convolution, and D3ℑ  denotes 3D Fourier transform. The 
discrete convolution can also be written in matrix-vector notation as  

DχB =p , (7)

where D denotes the SVC “system” matrix and χ is the column-stacked χ-map vector. 
The χ-induced field map in Hz is Δωp=γBp, where γ is the gyromagnetic ratio of hy-
drogen. 

2.2   Dynamic Field Map Estimation with Penalized Weighted Least Squares 
Estimation of Magnetic Susceptibility Map – A 3D Image Restoration 
Approach 

A static field map, Δωstatic, is typically approximated by taking the phase difference of 
a pair of gradient-echo images acquired at two different echo times [9], and may be 
composed of susceptibility and non-susceptibility induced field inhomogeneity 
sources. The two complex-valued images may be denoted by  

TE1TE1
jjj fI ε+= , (8)

TE2TTE2 ,static
j

Ei
jj

jefI εω += ΔΔ−
, (9)

where f is the complex transverse magnetization of the object, j is the voxel number, 
ΔTE is the echo time difference, and ε is independent identically distributed MR Gaus-
sian noise. The echo time difference is typically small to prevent phase wrapping. In 
previous work [10], the maximum likelihood estimator for Δωstatic was shown to be 
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Ignoring phase wrapping, and decomposing Δωstatic,j into susceptibility and system 
induced parts, i.e., Δωstatic,j = γ[Dχ]j + Δωsys,j, and since a minimum exists when the 
cosine term in Eq. 10 is equal to one, the maximum likelihood estimator for χ is 
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For simplicity, we assume that Δωsys is negligible, or can be measured empirically. 
Since the SVC frequency response has very small values at some frequencies, the 
inverse SVC problem is ill-posed, and thus 3D smoothness regularization is desirable 
when solving for χ. We propose to use a quadratic penalized weighted least squares 
(QPWLS) image restoration approach to estimate χ by minimizing the cost function 
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where g is the observed static field map ( ∠ ITE2- ∠ ITE1)/ΔTE, W is a weighting matrix 
that assigns higher weights to voxels where MR image intensity, i.e., |Ij

TE2Ij
TE1|, is 

higher, β is a regularization parameter that determines the amount of smoothing, and C 
is a first order finite-differencing matrix. We minimize the cost function using the 
conjugate gradient algorithm. Any available motion estimates for each slice or volume 
in the fMRI time series can then be used to rotate or translate the χ-map estimate. Since 
the SVC impulse response is linear shift invariant and depends only on the voxel size 
and orientation with respect to B0, it remains unchanged when a χ-map undergoes rigid 
body transformation. Thus, the same SVC matrix used in estimating the χ-map can be 
used to compute the dynamic field map after the desired motion has been applied. 

The proposed QPWLS method was compared to three other methods of approxi-
mating the dynamic field map from an observed field map: thresholded inverse filter-
ing [11], Wiener filtering [11], and direct rotation of the observed field map to the 
tilted positions [5]. The thresholded inverse filter ignores noise statistics and amplifies 
noise in frequency bands where the SVC frequency response has small values. To 
mitigate the latter, while preserving as much spatial information as possible, the 
threshold parameter needs to be chosen carefully, usually in an empirical manner. The 
Wiener filter assumes that χ and the additive field map noise are stationary processes, 
and assumes that their power spectra may be estimated accurately, which is often not 
true in the χ estimation problem. 

3   Methods 

3.1   Data Simulation 

To measure the algorithms’ performances, we generated 91 pairs of ground truth  
χ-maps of a simulated, off-centered spherical air pocket (χair=0.04 ppm [7]) in water 
(χwater=-9.05ppm [7]) that was rotated counterclockwise about the x-axis by angles 
from 0° to 180°, in increments of 2°. The dataset with 0° rotation was defined to be in 
the non-tilted position. In addition, an observed field map in the 0° position was gen-
erated. Each 256×256×256 dataset had a voxel size of 1mm×1mm×1mm. 
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A SVC impulse response was formed (Eq. 4) and applied to all the ground truth  
χ-maps (Eq. 6) with B0=1.5 T. The resultant ground truth field maps were then 
cropped to 128×128×128 voxel volumes. To form the weighting matrix W in Eq. 12, 
we simulated an image intensity map, f, with zeros in the air pocket region (no MR 
signal), and 100 in the water region. With the non-tilted ground truth field map 
(Δωstatic), an arbitrary value for ∆TE (short enough to avoid phase wrapping), and f, 
we used Eqs. 8 and 9 to generate two independent, complex Gaussian images, each 
with a SNR of 100.0. An observed non-tilted field map, g, shown in Fig. 1(a), was 
then computed as described in the Theory section. 

3.2   Experiments 

The main goal of this work is to accurately estimate rotated χ-maps and field maps 
given (i) an originally observed non-tilted susceptibility induced field map, and, (ii) 
the respective rotation angles about the x-axis. We compared the field map estimation 
accuracy of our proposed method with those of thresholded inverse filtering, Wiener 
filtering and direct rotation of the original observed field map to tilted positions. 

The first part of the experiment involved the estimation of the original, non-tilted 
χ-map using the various methods. We applied the SVC matrix to these χ-map esti-
mates to compute field map estimates from which a few slices are shown in the top 
row of Fig. 1. Root mean-square-error (RMSE) values were then computed with ref-
erence to the 3D ground truth non-tilted field map, Δωstatic. In the second part of the 
experiment, the χ-map estimates from the first part were all rotated about the x-axis by 
the same range of values used to create the 91 pairs of ground truth maps, i.e., 0° to 
180° in increments of 2°. The SVC matrix was again applied to these rotated χ-map 
estimates to compute the dynamic field map estimates. RMSE values were then com-
puted with reference to the 3D ground truth tilted field maps. The second row in  
Fig. 1 shows a few field map slices of the object rotated by 45°, and the field map 
RMSE values for all positions and methods were plotted in Fig. 2. 

The QPWLS implementation was built upon previous work [12], and 50 iterations 
of the algorithm were performed for each dataset with β=0.7. The initial guess for the 
conjugate gradient algorithm was a volume filled with zeros. For the thresholded 
inverse filter, a threshold value of 10 (0.2 % of the maximum absolute value of the 
inverse of the SVC frequency response) was used. A flat χ power spectrum was used 
for the Wiener filter to contrast its higher dependence on object prior information with 
that of the spatial smoothness prior in the proposed method. All algorithms were im-
plemented in MATLAB (The Mathworks Inc., Natick, MA, USA) and C++, and exe-
cuted on Intel Pentium 4 Xeon 3.0GHz CPUs. 

4   Results 

The RMSE values over entire 3D field map estimates for all rotated positions using 
the various field map estimation methods are shown in Fig. 2. Comparing all the 
methods, it was observed that the QPWLS method had the lowest (best performing) 
RMSE values, and RMSE variability, across all rotated positions. 
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Fig. 1. (Top row) Non-tilted field map slice (y-z plane) from (a) originally observed field map, 
(b) thresholded inverse filter estimate, (c) Wiener filter estimate with flat object power spec-
trum, (d) QPWLS estimate with β=0.7. (Second row) 45° rotated field map slice from (e) rota-
tion of original observed field map, (f) application of SVC on rotated estimate of χ from 
thresholded inverse filter, (g) application of SVC on rotated estimate of χ from Wiener filter, 
(h) application of SVC on rotated estimate of χ from QPWLS. (Bottom row) Ground truth field 
maps for (i) non-tilted, and (j) 45° tilted positions. Display scale: -200 to 450 Hz. 

Fig. 1 shows the field map estimates’ slices at the same spatial location in the y-z 
plane when the object was in the 0° and 45° rotated positions, i.e., same slice position 
from two rotation angles in Fig. 2. The x-axis points into the plane of the page. It was 
observed that the field map estimates in the spherical air region were invariably noisy 
for the inverse filter and Wiener filter in Figs. 1(b), 1(f), and Figs. 1(c), 1(g), respec-
tively. The noise in this region was greatly reduced in the QPWLS estimates in  
Figs. 1(d) and 1(h) because the weighting matrix suppressed the data fidelity require-
ment in the air region, which allows for smoother χ-map estimates in this region. 
Since there were less abrupt susceptibility changes in the regularized χ-map estimates, 
the resultant field inhomogeneity estimate in the air region was small and smooth. For 
an EPI pulse sequence with a typical phase encode pixel bandwidth of about 20 Hz, 
the QPWLS RMSE values (<20 Hz) in Fig. 2 represent errors of less than one pixel 
shift. In contrast, the RMSE values for the other methods (>20 Hz) translate to errors 
of more than one pixel shift, which may reduce the accuracy of geometric distortion 
algorithms that depend on field maps. The SVC field map computation time was 1.5 

RMSE: 31.8 Hz (a) RMSE: 42.6 Hz(b) RMSE: 24.3 Hz(c)

RMSE: 28.2 Hz (e) RMSE: 46.5 Hz(f) 

(i) (j) 
z, B0 

y

RMSE:18.1 Hz (d)

RMSE: 7.4 Hz (h)RMSE:188.6 Hz(g)
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secs for a 128×128×128 voxel χ-map. The computation times for χ-map estimation 
using the thresholded inverse filter, Wiener filter and QPWLS method were 4.1 secs, 
5.8 secs, and 5.6 secs (one iteration), respectively. 

5   Discussion and Conclusions 

The proposed method estimates dynamic susceptibility induced field maps from an 
observed static susceptibility induced field map, while accounting for the proper MR 
noise model. It does not require segmentation or pulse sequence modifications, and 
may yield higher resolution 
dynamic field maps that 
address nonlinear changes 
due to out-of-plane rotations. 
Fig. 2 shows quantitatively 
that the QPWLS RMSE val-
ues were the lowest (best 
performing) among all the 
other methods. Figs. 1(d) and 
1(h) show qualitatively that 
the field map estimates were 
close to the ground truths. 
For our spherical air pocket 
in water, nonlinear field map 
changes would typically be 
worst at the 90° position, 
hence the peak in Fig. 2 for 
the method that simply ro-
tates the observed field map. 
In contrast, the low QPWLS 
RMSE variability across 
rotation angles in Fig. 2  
suggests that the method 
performs reasonably well 
regardless of rotation angles. 
Further improvements may 
be possible upon optimizing 
the choice for the regulariza-
tion parameter, coupled with 
the implementation of regu-
larization functions that util-
ize prior spatial information specific to a brain’s χ-map. A potential limitation of the 
proposed method may arise because Δωsys was ignored in Eq. 11. In future work, we 
will investigate methods to reliably measure non-χ induced field inhomogeneities, 
characterize their effects on the various approaches in this work, and validate the 
proposed method with real data. 

Fig. 2. Dynamic field map RMSE values versus rotation 
angles for different estimation methods when object was 
rotated about the x-axis from 0° to 180°. The Wiener filter 
results were truncated due to large RMSEs. 
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A novel regularized image restoration approach to estimate field maps of a moving 
object was proposed and shown, with simulated data, to be more effective than non-
regularized methods or simple transformations of an observed field map. In fMRI, 
this may potentially improve dynamic field map estimates and hence, geometric dis-
tortion correction accuracy. 
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