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ABSTRACT

In the remote sensing context the goal of imaging polarimetry is to map the state of polarization of a scene
of interest. The polarization state of a scene can be represented by the Stokes parameters. Since the Stokes
parameters are not directly measurable one must first make several individual measurements and then the infer
the Stokes parameters. We approach the Stokes parameter construction problem using penalized-likelihood
estimation. Given the measured linearly polarized images, what is the optimal means by which to deblur and
denoise and construct the Stokes parameters? In traditional image restoration one attempts to restore the
blurred and noise corrupted data directly. In the case of imaging polarimetry we must answer the question of
the optimality of restoring the measured data and then forming the Stokes images or restoring the Stokes images
directly. An alternative approach is to estimate the Stokes parameters directly. We define our cost function
for reconstruction by a weighted least squares data fit penalty and a regularization penalty. We show that for
quadratic regularization the estimators of Stokes and intensity images can be made equal by appropriate choice
of regularization parameters. It is empirically shown that, when using edge preserving regularization, estimating
Stokes parameters directly leads to somewhat lower error.
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1. INTRODUCTION

1.1 Polarimetry in Remote Sensing: Stokes Vector Imaging

In remote sensing and astronomical applications the properties of light that are commonly measured and ana-
lyzed include intensity, wavelength, and coherence.1, 2 In the context of imaging, intensity measurements provide
information on scene content while spectral measurements provide additional information that can be used for
material classification and target identification. A fourth property of light that is related to imaging is polariza-
tion. Polarization varies slowly with wavelength and so tends to be uncorrelated with spectral measurements1

thereby offering the potential for image enhancements not available with spectral measurements alone.

Polarization signatures are indicative of surface features of the object, i.e., surface orientation and roughness.1∗

Man made objects tend to have smoother surfaces than natural objects, so the mechanism of reflection is
dominated by specular reflection which tends to retain or even enhance any polarization of the source.

The state of polarization of a transverse optical field can be represented in several ways;4 in this paper we
focus on the Stokes vector representation. The Stokes vector is a four component vector, S = (S0, S1, S2, S3),
whose elements are functions of the intensity (flux density) of the optical field. The components of the Stokes
vector are defined as follows: S0 is the total intensity, S1 is the difference between the intensity transmitted by
a linear polarizer oriented parallel to the x (0◦ reference) axis and one oriented parallel to the y axis, S2 is the
difference between the intensity transmitted by a linear polarizer oriented at 45◦ to the x axis and one oriented
at 135◦, and S3 is the difference between the intensity transmitted by a right circular polarizer and a left circular
polarizer. In the vast majority of remote sensing applications the component S3 is negligible, for this reason it
is typical to work with only the first three components of the Stokes vector.

The intensity passed by a linear polarizer, whose transmission axis is oriented at angle θ, may be written in
terms of the components of the Stokes vector. The effect of an ideal linear polarizer is to pass that part of the

∗In general, polarization signatures can give information about material composition however those applications reside
largely in the field of ellipsometry3 and are outside the scope of this work.
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electric field which is along the transmission axis of the polarizer. Let the transmission axis of the polarizer be
pθ = cos(θ)̂i + sin(θ)̂j and the electric field be

E (t) = Ex (t) î + Ey (t) ĵ. (1)

The intensity, Γ(θ), passed by the polarizer is then†

Γ (θ) = 〈(E (t) · pθ)
2〉

= 〈E2
x (t)〉 cos2 (θ) + 〈E2

y (t)〉 sin2 (θ) + 2〈Ex (t)Ey (t)〉 sin (θ) cos (θ) . (2)

Using of the identities cos2(θ) = (1 + cos(2θ))/2 and sin2(θ) = (1 − cos(2θ))/2 we can rewrite the expression for
the intensity as

Γ (θ) =
1
2
(〈E2

x (t)〉 + 〈E2
y (t)〉 +

(〈E2
x (t)〉 − 〈E2

y (t)〉) cos(2θ) + 2〈Ex (t)Ey (t)〉 sin(2θ)
)
. (3)

The components of the Stokes vector are defined in terms of optical intensity, and can be written in terms of
the electric field, as follows

S0 = Γ (0◦) + Γ (90◦) = 〈E2
x(t)〉 + 〈E2

y(t)〉 (4)

S1 = Γ (0◦) − Γ (90◦) = 〈E2
x(t)〉 − 〈E2

y(t)〉 (5)

S2 = Γ (45◦) − Γ (135◦) = 2〈Ex(t)Ey(t)〉, (6)

and, by direct substitution, the intensity is related to the Stokes parameters as follows

Γ (θ) =
1
2

(S0 + S1 cos(2θ) + S2 sin(2θ)) . (7)

For J measurement angles {θ1, . . . , θJ} equation (7) becomes a system of J equations. In matrix form the
system is

Γ = TJ×3S. (8)

where Γ = ((Γ(θ1), . . . ,Γ(θJ )) and S = (S0, S1, S2). The conventional estimate of the Stokes vector uses the
pseudoinverse‡ (if it exists) of TJ×3:

Ŝ = T†
J×3Γ. (9)

Moreover, note that the model (7) and the estimate (9) have ignored noise, blur, and other degradations.

2. IMAGE RECONSTRUCTION APPLIED TO STOKES VECTOR IMAGING

Traditionally, statistical image reconstruction techniques are applied to data that has been corrupted by non-
ideal system effects, i.e., noise and blur. When applying a reconstruction algorithm to polarimetric imagery we
are confronted with the question of which image set to reconstruct: the polarimetric intensity images or the
underlying Stokes images. While access to the Stokes images is the ultimate goal we must be concerned with
the low signal levels in the S1 and S2 images. On the other hand, the intensity images do not have this low
signal difficulty and so are good candidates for improvement through image reconstruction. We investigate both
approaches theoretically and numerically. Estimation of the intensity images is referred to as the traditional
approach and estimation of the Stokes vector is referred to as the proposed approach. We explore both a
quadratically penalized weighted least squares estimator and a weighted least squares estimator with edge-
preserving regularization.

†〈·〉 indicates time averaging.
‡The pseudoinverse will be indicated by a superscript †.
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2.1 Traditional Image Restoration Approach

In the traditional approach to image restoration we try to recover the uncorrupted images from the noisy images
individually. For the polarimetric imaging problem this translates into first restoring the true intensity images,
and then converting those images into Stokes space via the linear transformation (9). We treat the general case
of J polarimetric channels (images) each having a unique polarization angle associated with it.

Denote the lexicographically ordered data of the jth channel by yj , the system matrix, that represents physical
effects such as optical and detector blur, by Aj , and the noise vector by εj . The data vectors {yj} are each of
length nd. The size of the system matrix of the jth channel is nd × np where np is the number of pixels in an
individual true intensity image Γj(In general, nd �= np). The noise vector, εj , for the jth channel is of length nd.
The model for the jth channel of the collected data is

yj = AjΓj + εj. (10)

For simplicity, we adopt a zero-mean iid Gaussian noise model:

εj ∼ N(0, σ2I). (11)

The likelihood function of the jth data channel, yj , given the intensity image Γj

p(yj|Γj) =
1

√
σ2(2π)nd

exp
(
− 1

2σ2
(yj −AjΓj)

′ (yj −AjΓj)
)

(12)

and the total likelihood function for the data set can then be written

p(y|Γ) =
1

√
σ2(2π)Nd

exp
(
− 1

2σ2
(y − AΓ)′ (y − AΓ)

)
(13)

where Nd = Jnd is the total number of measured pixels and

y = (y1, . . . , yJ) , Γ = (Γ1, . . . ,ΓJ) , A = diag (Aj , . . . , AJ ) .

A penalized-likelihood estimator for Γ is given by

Γ̂ = min
Γ

{− log p(y|Γ) +RΓ(Γ)} (14)

where RΓ is a regularization function for the intensity images. Typically, RΓ (Γ) separates, i.e.,

RΓ (Γ) =
J∑

j=1

Rj (Γj) , (15)

and the likelihood also separates, so the minimization problem for Γ̂ separates into J individual regularized
image restoration operations.

The estimated Stokes vector, ŜΓ, is then calculated by using a generalized version of equation (9) that is
appropriate for images. The generalization to images is accomplished by writing the transformation matrix so
that we have a pixel-by-pixel version of equation (9), define Ť = TJ×3 ⊗ Inp×np so that§

ŜΓ = Ť†Γ. (16)

§Inp×np is the np × np identity matrix and ⊗ denotes Kronecker product.
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2.2 Stokes Estimation Model

The model for estimating the Stokes vector (images) differs from from the traditional estimation model in both
the likelihood function and the regularization function. The likelihood function, under the same system and
noise model is

p(y|S) =
1

√
σ2(2π)Nd

exp
(
− 1

2σ2

(
y − AŤS

)′ (
y − AŤS

)
)
. (17)

A penalized-likelihood estimator for the Stokes vector is

Ŝ = min
S

{− log p(y|S) +RS(S)} (18)

where RS is a regularization function for the Stokes images. As in the traditional estimator the regularization
function RS typically separates, i.e.,

RS (S) =
3∑

j=1

Rj (Sj) . (19)

However, unlike the traditional case the likelihood function p(y|S) does not separate and so the minimization
problem is coupled.

3. ANALYTICAL ESTIMATOR ANALYSIS: QUADRATICALLY PENALIZED
WEIGHTED LEAST SQUARES ESTIMATOR

This section compares analytically the traditional and Stokes estimators. The degrading effect of the imaging
system is taken to be optical blur and represented by the matrix B, i.e., Aj = B in equation (10). This matrix is
Toeplitz if the system is shift invariant, but the analysis that follows applies to a general B matrix. We emphasize
that each channel has the same optical and detector blur, this is a reasonable assumption because aberrations
and detector effects are not affected by linear polarizers.

3.1 Traditional Estimator

We focus on the case of four polarimetric measurements (taken with linear polarizers) at angles [0◦, 45◦, 90◦, 135◦];
this sets the size of TJ×3 in equation (8) to T4×3.The Stokes to intensity transformation, T4×3, and the intensity
to Stokes transformation, T†

4×3, are given by

T4×3 =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

1
2

1
2 0

1
2 0 1

2

1
2 − 1

2 0

1
2 0 − 1

2

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

and T†
4×3 =

⎡

⎢
⎢⎢
⎣

1
2

1
2

1
2

1
2

1 0 −1 0

0 1 0 −1

⎤

⎥
⎥⎥
⎦
. (20)

The data model is
y = (I4×4 ⊗B)Γ + ε, (21)

and the quadratic regularizing penalty function is formed using vertical and horizontal neighboring pixels. In
one dimension the regularizer, RΓ (Γ), is written

RΓ (Γ) =
1
2
β

J∑

j=1

np∑

k=2

(Γjk
− Γjk−1)

2

=
1
2
β

J∑

j=1

‖CΓj‖2 (22)
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where C is a finite differencing matrix and β is the regularization “tuning” parameter.¶ In two dimensions the
summation notation becomes cumbersome and so we use linear algebra notation exclusively. Let C be a finite
differencing matrix that takes both vertical and horizontal differences, then the regularization function can be
succinctly written, noting that C def= I4×4 ⊗ C, as

RΓ (Γ) =
1
2
β‖CΓ‖2. (23)

The total cost function can then be written

Γ̂ = min
Γ

{
1

2σ2
‖y − (I4×4 ⊗B)Γ‖2 +

1
2
β‖CΓ‖2

}
. (24)

We consider the case of unconstrained optimization and so the minimizer must satisfy

∇Γ

(
1

2σ2
‖y − (I4×4 ⊗B)Γ‖2 +

1
2
β‖CΓ‖2

)
= 0. (25)

We can solve the above equation for Γ̂ yielding

Γ̂ =
(
I4×4 ⊗

[
B′B + σ2βR

]−1
B′
)
y (26)

ŜΓ = Ť†Γ̂, (27)

where R = C′C.

3.2 Stokes Estimator

The data model for Stokes estimation is written slightly different than the traditional estimation approach, noting
that the system effects are identical to the case of the traditional estimator we write

y = (T4×3 ⊗B)S + ε. (28)

Following the same procedure as in the case of the traditional estimator we have the following implicitly defined
estimator

Ŝ = min
S

{
1

2σ2
‖y − (T4×3 ⊗B)S‖2 +

1
2
(
β0‖CS0‖2 + β1‖CS1‖2 + β2‖CS2‖2

)
}
. (29)

We remark that in this case the images being estimated are very different and so justify three independent
regularization “tuning” parameters. The minimizer in this case must satisfy the condition

∇S

{
1

2σ2
‖y − (T4×3 ⊗B)S‖2 +

1
2
(
β0‖CS0‖2 + β1‖CS1‖2 + β2‖CS2‖2

)
}

= 0, (30)

which leads to the closed form estimator

Ŝ =
[
T′

4×3T4×3 ⊗B′B + σ2β3×3 ⊗ R
]−1 (

T′
4×3 ⊗B′)y (31)

where β3×3 = diag(β0, β1, β2), and R = C′C.

¶The regularization parameter is not expected differ between the different polarimetric channels as there is a high
correlation between them.
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3.3 Spatial Resolution Analysis of the Stokes Estimator

We begin by calculating the mean value of the Ŝ estimator. To aid in the calculation define P = diag(1, 2, 2),
P−1 = diag(1, 1

2 ,
1
2 ). Then

E[Ŝ|S] =
[
T′

4×3T4×3 ⊗B′B + σ2β3×3 ⊗R
]−1

(I3×3 ⊗B′)
(
P−1 ⊗ Inp×np

) (
T†

4×3 ⊗ Inp×np

)
E[y|S]

=
[
T′

4×3T4×3 ⊗B′B + σ2β3×3 ⊗R
]−1

(I3×3 ⊗B′)
(
P−1 ⊗ Inp×np

) (
T†

4×3 ⊗ Inp×np

)
(T4×3 ⊗B)S

=
[
T′

4×3T4×3 ⊗B′B + σ2β3×3 ⊗R
]−1

(I3×3 ⊗B′)
(
P−1 ⊗ Inp×np

)
(I3×3 ⊗B)S

=
[
P−1 ⊗B′B + σ2β3×3 ⊗R

]−1 (
P−1 ⊗B′B

)

︸ ︷︷ ︸
L

S

= LS, (32)

where L is a [3np × 3np] matrix that acts somewhat like a Wiener filter. Each term in the above expression
is uncoupled since the matrices P−1 and β3×3 are diagonal. To explore the spatial resolution properties of the
estimators, we approximate B′B and R by circulant matrices. Let the eigen-decompostions of B′B and R be
approximated by QΘ′ΘQ′ and QΩQ′ respectively‖. Then

E[Ŝ|S] =
[
P−1 ⊗QΘ′ΘQ′ + σ2β3×3 ⊗QΩQ′]−1 (

P−1 ⊗QΘ′ΘQ′)S

= Q
{[
P−1 ⊗ Θ′Θ + σ2β3×3 ⊗ Ω

]−1 (
P−1 ⊗ Θ′Θ

)}
Q′S. (33)

We see that the expectation of Ŝ is approximately a filtered version of the true objects with each image having
an independent filter.

Filter for S0 =⇒ Lk =
|Bk|2

|Bk|2 + β0σ2Rk

Filter for S1 =⇒ Lk =
1
2 |Bk|2

1
2 |Bk|2 + β1σ2Rk

Filter for S2 =⇒ Lk =
1
2 |Bk|2

1
2 |Bk|2 + β2σ2Rk

, (34)

k = 1, . . . , np. We see that the S1 and S2 channels have a different spatial resolution than the S0 channel, unless
we choose β1 = β2 = β0/2. However, in the intensity model all three channels always have identical resolutions.
Matching the spatial resolution of the S1 and S2 channels to the S0 channel also leads to the uncoupling of
estimator. That is, by choosing β3×3 = βdiag(1, 1

2 ,
1
2 ) we have

Ŝ =
[
T′

4×3T4×3 ⊗B′B + σ2β3×3 ⊗R
]−1 (

T′
4×3 ⊗B′)y

=
[
diag(1,

1
2
,
1
2
) ⊗ (B′B + σ2βR

)]−1 (
T′

4×3 ⊗B′)y

= diag(1, 2, 2)⊗ [B′B + σ2βR
]−1 (

T′
4×3 ⊗B′)y

= T†
4×3 ⊗

[
B′B + σ2βR

]−1
B′y

= ŜΓ. (35)

The Stokes estimator has uncoupled and reduced to the traditional estimator.

‖Q denotes the orthonormal DFT matrix.
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3.4 Edge-preserving Regularization

In the Stokes images {S1, S2} the polarization information typically has sharp edges. To recover as much
polarization information as possible the regularization function should preserve edges as much as possible. Since
the quadratic regularization tends to wash out edges and smooth noise we explore edge preserving regularization

using the hyperbolic function ψ(t; δ) = δ2
(√

1 +
(

t
δ

)2 − 1
)

. For fixed δ this function is approximately quadratic

for values of t < δ and approximately linear for t > δ. This behavior will tend to smooth noise and preserve
edges. The Stokes and intensity estimators now written

Ŝ = min
S

{
1

2σ2
‖y − (T4×3 ⊗B)S‖2 + (β0ψ (CS0; δ0) + β1ψ (CS1; δ1) + β2ψ (CS2; δ2))

}
(36)

Γ̂ = min
Γ

⎧
⎨

⎩
1

2σ2
‖y − (I4×4 ⊗B)Γ‖2 + β

∑

j

ψ (CΓj ; δ)

⎫
⎬

⎭
(37)

The Stokes estimator now has two regularization parameters per Stokes image and the intensity estimator has
two regularization parameters in total∗∗. Since closed form expressions for the minimizers of these cost functions
are intractable we minimize (36) and (37) numerically. The numerical optimization was done with the LBFGS
algorithm.5 To obtain optimal values of all regularization parameter combinations would be computationally
burdensome so we chose the β parameters by analyzing the local point spread function of the quadratic estimators.
The β parameters are chosen so that the FWHM of the estimator is a prescribed amount in regions where the
regularization function is approximately quadratic. The local impulse response is defined by

l j(S) = lim
ε→0

Ŝ (y(S + εej) − Ŝ (y(S))
ε

= ∇Ŝ (y(S))∇y(S) ej . (38)

For the quadratically penalized weighted least squares estimator with white Gaussian noise the local impulse
response of each Stokes image is independent and written6

lkj = [B′B + σ2βkR]−1B′B ekj where k ∈ {0, 1, 2} indicates the Stokes image. (39)

Using a local Fourier approximation we can compute this impulse response with FFTs. Since the FFTs are
computationally inexpensive we can sweep over the β parameters and choose the one that corresponds to an
a priori FWHM of the impulse response. By choosing β so that the estimator has controlled noise smoothing
properties we can vary the δ parameters to find optimal values.

4. SIMULATION EXPERIMENTS

Simulation experiments were performed to evaluate the estimators (36) and (37). For the true imagery we
used polarimetric images that were collected by General Dynamics Advanced Information Systems in Ypsilanti,
Michigan; the polarization angles of the sensor were {0◦, 45◦, 90◦, 135◦}. We added known blur and Gaussian
noise to the imagery. The system PSF was had a FWHM of 1.9 pixels; the PSF was constructed from a phase
screen, parameterized by a uniform distribution of the first 20 Zernike polynomials, placed in an annular pupil.
The SNR of data was 25dB.†† The noisy and blurred polarimetric imagery is shown in Figure 1.

The regularization parameters [β0, β1, β2, β] were chosen so that the FWHM of each estimator PSF was 1.5
pixels and the spatial resolution across the Stokes channels was constant (recall equation (34)). The second set
of regularization parameters, [δ0, δ1, δ2, δ], was determined by sweeping over a range and choosing the parameters
which yielded a minimum RMS error in the estimate.

∗∗Recall that the intensity images are highly correlated and so we do not expect them to have different regularization
parameters.

††We define SNRdB = 20 log10(‖ȳ‖/‖ȳ − y‖) where ȳ and y are the uncorrupted and corrupted images respectively.
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5. RESULTS

Table 1 compares the RMS errors of four quantities: (1) The total Stokes estimate, (2) the S0 estimate, (3) the
S1 estimate, the S2 estimate, and (4) the estimate of the degree of linear polarization (DOLP). The DOLP is a
useful quantity in polarimetric image analysis and is defined by DOLP =

√
S2

1 + S2
2/S0.

The noisy and blurred data is shown in Figure 1, and the estimated polarimetric imagery using the traditional
estimation method is shown in Figure 2. Comparison of the pristine imagery and estimates for S0 are shown in
Figure 3, estimates of S1 are shown in Figure 4, estimates of S2 are shown in Figure 5, and estimates of DOLP
are shown in Figure 6.

6. CONCLUSIONS AND FUTURE WORK

Estimation of Stokes vectors directly provides estimates with modestly lower overall RMS error as compared with
restoring the intensity images and then transforming to Stokes space for interpretation. Future work includes
further investigation into regularization optimization and addressing non idealities such aliasing and broadband
PSF effects. Also, investigating estimator efficiency and convergence properties will be done.
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Table 1. Simulation Results

Stokes Estimator Fractional RMSE Traditional Estimator Fractional RMSE
Ŝ0 1.33% 1.30%
Ŝ1 18.5% 27.9%
Ŝ2 25.5% 38.1%

DOLP 21.5% 31.0%
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Figure 1. Noisy and blurred polarimetric imagery. From left to right the angle of the polarizer is {0◦, 45◦, 90◦, 135◦}

Figure 2. Estimated polarimetric imagery. From left to right the angle of the polarizer is {0◦, 45◦, 90◦, 135◦}

Figure 3. Estimates of S0. From left to right: Pristine, Proposed Method, Traditional Method

Figure 4. Estimates of S1. From left to right: Pristine, Proposed Method, Traditional Method
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Figure 5. Estimates of S2. From left to right: Pristine, Proposed Method, Traditional Method

Figure 6. Estimates of DOLP. From left to right: Pristine, Proposed Method, Traditional Method

SPIE-IS&T/ Vol. 6814  681403-10


