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E({ g<1» = Ed(! 0 (I + <1», g) + )..Er (!, g; T), (3)

Due to the ill-posedness of the image registration problem,
the energy E usually consists of two component: a discrepancy
term that measures the mismatch between f 0 (1 + <1') and a
regularization term that incorporates prior knowledge about
the desired deformation. Mathematically:

where r is the feasible set of deformations.
One of the most widely used method is to pose the image

registration problem in an optimization framework, and obtain
the deformation estimate as the optimal solution to a designed
energy functional:

In this study, we propose a class of regularization schemes
that preserve intrinsic discontinuities in the deformation field
itself. We provide general analysis on their functional forms,
and some desired properties as a consequence. We derive the
descending flow for optimization and discuss briefly some
implementation issues. A preliminary 2D test with clinical CT
data shows promising results.

(2)

(1)910 ~ f 0 (1 + <1'*)10,

<1'* = argmin E(f, 9, <1').
<l'Er

where A balances the effect of the two competing energies.
The choice of discrepancy measure depends on the data

type. In general, sum of squared distance is used for cali
brated monomodality registration and mutual information for
multi-modality registration. Correlation based metric is also
commonly applied.

We focus on regularization energy, and list the most com
monly most commonly acknowledged prior knowledge about
the deformation and the corresponding mathematical formula
tion in Table I.

II. BACKGROUND AND EXISTING WORK

For clarity, we discuss the derivations for 2D case, yet
all analysis generalizes naturally to higher dimensions. We
represent the deformation vector field <1' : n -t ~2 as
<1'(x) = [u(x), v(X)]T, where n indicates the region of
interest; u and v are directional deformation and assumed to be
orthogonal (but do not have to align with the image coordinate
(x, y)) in general. Given an source image f : {l -t ~ and a
target image 9 : ~! -t ~, the goal of image registration is to
find an estimate of the deformation vector field ~ E r such
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Abstract-Sliding effects often occur along tissue/organ bound
aries. However, most conventional registration techniques either
use smooth parametric bases or apply homogeneous smoothness
regularization, and fail to address the sliding issue. In this
study, we propose a class of discontinuity-preserving regular
izers that fit naturally into optimization-based registration. The
proposed regularization encourages smooth deformations in most
regions, but preserves large discontinuities supported by the data.
Variational techniques are used to derive the descending Bows.
We discuss general conditions on such discontinuity-preserving
regularizers, and their properties based on an anisotropic filtering
interpretation. Preliminary tests with 2D CT data show promising
results.

I. INTRODUCTION

M EDICAL registration techniques aim to find the co
ordinate transformation that best matches two images.

Organ and tissue motions are complex, and any reasonably
accurate description of such motion requires high degrees
of freedom. The image registration problems that estimates
such nonrigid transformations are known to be ill-posed. As a
consequence, prior knowledge about the underlying physical
process is incorporated to address this challenge. In particular,
smoothness of the transformation is widely utilized: paramet
ric methods use smooth basis functions (such as B-spline)
and optimize over relatively small number of coefficients;
fully nonparametric methods such as optical flow and bio
mechanical models with finite elements either build in smooth
ness constraints or incorporate smoothness regularization in an
optimization framework. However, sliding along tissue/organ
boundary widely exists, and homogeneous smoothing of the
transformation field blurs the estimated transformation across
the sliding interface, resulting in undesirable artifacts.

Recently, several studies [I], [2] of joint segmentation and
registration have arisen from various disciplines and applica
tions. In these methods, smooth regions and singularity sets
(edges) are devised according to image intensity, and regis
tration aims to align each part respectively. The smoothness
and discontinuity in the deformation itself is not addressed
directly.
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TABLE I
COMMON PRIOR FOR DEFORMATION <I>

In this work, we address a different type of prior knowledge:
sliding effect along some anatomical structures. It is known
that sliding occurs between interior anatomical structures
(lung and diaphragm in particular) and the rib-cage during
respiratory motion. However, with global smoothness regu
larization/constraint, the estimated deformation field fails to
accurate capture this discontinuity. Some recent studies [1],
[2] addressed this problem from the perspective of joint seg
mentation and registration and demonstrated promising results.
However, the underlying assumption that motion discontinuity
coincides with intensity discontinuity is questionable. During
breathing, there is interaction between the diaphragm and lung
expansion/shrinkage. Allowing discontinuity between these
two organs would be misleading in estimating the deformation
field. In this study, we aim to design a regularization energy
that preserves the intrinsic discontinuity of the motion field.

Applying variational analysis, and assuming Neumann bound
ary conditions, i.e., anu = 0 and anv = 0 on an, we derive
the descent flow[7] W r = (ur , vr ) of E r to be as follows:

(8)

(7)

a\1. (-¢)
a\1u

\1 . (¢'(ID<I>I) \1 )
ID<DI u.

This matrix norm is independent of both the image coordi
nate system (x, y) and the deformation vector field direction
(u, v). For simplicity, we assume that the u and v components
of the vector field correspond to the deformation field in
x and y directions respectively hereafter. In addition, this
measure of "deformation change" introduces coupling among
the various directions in the vector fields and reflects the
intuition that we observe a "jump" in the deformation field
regardless of the specific direction such change occur, unlike
the simple coordinate-wise sum used in traditional optical
flow regularization [7], [8]. For simplicity, we make matrix
Frobenius norm the default notation for ID<I>I hereafter and
drop the subscript.

We consider a class of regularizers with the form:

Er = J II V <I> II 2

II V <I> + III > 0 for all ~ E 0
Er = J(IIV<I> +III -1)2

Er = J TJ(~) IIV<I>V<I>T - III

smoothness [3]
topology preservation [4]
volume preservation [5]

local rigidity [6]

II~. PROPOSED METHOD

As we are mainly interested in geometric regularization for
smoothness/discontinuity, the regularization term is taken to
be independent of the image. It corresponds to a special case
of the regularized registration problem introduced in (3) with

The expression for the update flow Vr for v is similar. For sim

plicity, we define the "influence function" as 'l/J( s) ~ ¢' (s) / s.
To design a proper regularization ¢ that results in edge pre

serving flow, we interpret the process as anisotropic filtering
and decompose the effect of the flow into the normal and
tangent directions for each component of the deformation field.
We derive the regularization flow in 11 - direction as:

A constant weight A is adopted throughout the whole image to
balance the data fidelity and regularization energy. We focus
on designing E p and assume mono-modality images with £2
metric as data fidelity measure hereafter. Thus the goal of
registration can be formulated as:

<I>* argmin E(!, 9, <I» (4)
<PEr

argmin{IIg - f 0 (1 + <I»II~ + AEr(<I»}. (5)
<PEr

1I/'(ID<I>I)(u +u ) + ¢"(ID<I>I) -1/J(ID<I>1)
tp xx YY ID<I>1 2 ...

x (u;uxx + 2ux u y uxy + U~Uyy). (9)

By convention, we denote the second derivatives of u in the
tangent (T-) direction and normal (N-) direction as UTT and
UNN respectively, with

_ TT n 2 T - 1 (2 2 2 ).
UTT - v U - l\1ul UxU yy + UyUxx - UxUyUxy ,

D<I>(x) = [U x uy ].
Vx vy

We propose to use the Frobenius norm of the matrix D<I>(x)
as the local measure of variation for the deformation field:

A. Discontinuity Preserving Regularization

To encourage smooth deformations in most of the region of
interest (RDI), yet admitting some discontinuities requires a
"magnitude" measure of the local change of the deformation
field, analogous to the norm of image gradient in image
restoration. The Jacobian of the deformation <I> at x is given
by:

ID<I>I Frob .Ju2 + 11
2 + v2 + v2

xy x y

.J1\1ul~ + l\1vl~·

UNN = NT",PuN = l~ul (u~uxx + U~Uyy +2uxu yuxy ).

Rearranging the terms in (9) yields:

2 ¢"(ID<I>I) 'l/J(ID<I>I) 'l/J(ID<I>I))
u,. = ¢(IDcI>l)uTT+IVul (IDcI>12 IDcI>12 +~ UNN·

(10)
For 2D case (higher dimension situations have similar

structure):

(6) The coupling between U and v in the flow motivates us
to consider the contribution of variation in each deformation
d· . . ID.rT...1 UT d fi j3 ~ IVul 2 d j3 ~ IVvl 2

BIrectlon In 'J! • ne e ne u = l"WF an v = l"WF' y
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construction, f3 E [0,1] and f3u + f3v = 1. Then (10) can be
rewritten as:

One possible compromise is to let both terms approach
zero as 8 -4 +00, but at different rates:

Ur = (¢"(s)f3u + 'l/J(s)f3t,)UNN + 'l/J(S)UTTl (11)

Now we are ready to discuss some desired properties for the
function ¢. This is more complicated than image restoration
problems as ¢ is intrinsically a function of both U and v.

• In the presence of small variations in the deformation,
(ID<PI small implies l\lul, l\lvl both small), isotropic
smoothing is desirable in each individual deformation
direction. It is reasonable to require non-trivial smoothing
along the tangent direction:

To have isotropic diffusion as 8 -4 0+ is equivalent to:

. ¢"(8)
hm f3v + f3u ---:;:-() = 1.8---+0+ 'If/ 8

Together with the fact that f3u + f3v = 1, isotropic
diffusion for small deformation implies

lim 'ljJ (s) = lim ¢"(s) > O. (13)
8---+0+ 8---+0+

Once the conditions (12) and (13) are satisfied, the flow
(11) for small variation reduces to:

U r ~ ¢"(O)~u.

The same analysis holds for vr . We immediately recog
nize that this diffusion coincides with the isotropic flow
from the heat equation.

• In the presence of large variations in deformation (large
ID<PI), it is desirable to diffuse the deformation along
the discontinuity, but not across it. We need to keep
in mind that the level of discontinuity ID<PI takes into
account deformation in all directions, and the diffusion
process in a certain direction (u or v) is decomposed
with respect to its own gradient field. In other words, the
diffusion process in U direction is the projection of the
joint deformation flow onto that direction. To preserve
discontinuity, it suffices to annihilate the coefficients of
UNN and VNN for large ID<I>I, and assume non-vanishing
coefficients for the tangent flow components.

{
lim8---++00 ¢"(s)f3u + 'ljJ(s)f3v = 0;
lim8---++00 'l/J(8) > O.

If one were to insist on the annihilation of the normal
flow for all possible combinations of ({3u: (3v), it would
be necessary to require:

lim ¢"(s) = 0 and lim 'l/J(s) = O.
8---++00 8---++00

On the other hand, if f3u ~ 0, indicating that the variation
in x-direction (I\lul) is relatively small, isotropic diffu
sion in that direction would not result in over-smoothing
discontinuity and should be acceptable. With v being the
major contributor to the overall discontinuity in ID<I> I,
only vN N has to be annihilated. Unfortunately, this again
results in a set of incompatible conditions on ¢:

lim ¢"(s) S 0 and lim 'ljJ(s) 2:: O.
8---++00 8---++00

(14)

¢'(O) = 0, with lim 'ljJ(s) > O.
8---+0+

(12)

{
lims---++oo ¢."(s) = lim8---++ 00 'ljJ(s) = 0;
• 4>"(s)

hm8---++00 'lj)(8) = O.

The above derivation gives a recipe for testing whether a
candidate function ¢ would induce a discontinuity preserving
flow. In fact, many functions satisfy the above conditions
(12),(13) and (14), e.g., the hypersurface minimal function
¢(s) = VI + s2 [7]. Due to the nonconvex nature of registra
tion problems, we are interested in finding only reasonable
local minima in general. In the usual case where Ed is
nonconvex in <P, it may be unnecessary to insist on ¢ being
convex.

We briefly comment on the connection between the general
formulation with ¢ and some common regularizers here.

• ¢(8) = 8 2 corresponds to the regularization energy:

Er ,12(<I» = JlI\7n112 + lI\7v112
dx. (15)

This is a natural generalization of Tikhonov regularization
in image restoration. It is the same energy that Hom and
Schunk [3] introduced in the optical flow setting. It is easy
to check that ¢(8) = 8 2 violates condition (14), thus fails
to preserve discontinuity, which agrees with the known
theory.

• ¢(8) = 8 corresponds to the regularization energy:

Er.lt (<1» = JVII\7nI1 2 + II\7vIl 2
dx, (16)

which can be regarded as a rotationally invariant general
ization of the total variation (TV) regularization for flow
fields [9]. Strictly speaking, ¢(s) = s does not satisfy
isotropic diffusion condition for small variation, since it
has vanished Hessian. Fortunately, almost all numerical
implementation of uses a relaxed version by "rounding
off" the comer of the l1 in a small neighborhood of zero.
This relaxation gives ¢ quadratic behavior as S -4 0+,
making the implemented functional satisfy the required
conditions for a discontinuity preserving flow.

IV. A TEST SETUP WITH TRUNCATED QUADRATIC

REGULARIZER

The £2 data discrepancy reads,

Ed = !1(g(x) - f(x + <p(X)))2,
2 [2

and the corresponding variational descent flow is given by:

Wd(X) = (g(x) - f(x + <p(x))\l f(x + <p(x)).

For the preliminary test, we use a truncated quadratic [10] as
the regularization function:

{
(~)2S2 lsi S Q;

¢(s, Q;) = a5 otherwise. (17)

The disadvantage and benefit of this choice are both clear.
With strict "saturation" behavior above the scale parameter
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target image (exhale)source image (inhale)_a=ao
a = 3/4 a

a = 1/2 a

Fig. 1. Truncated quadratic regularization with varying scale.

'8'
ur
:e: Decreasing a

a, it poses a challenge for optimization. Graduated noncon
vexification approaches can be utilized. On the other hand,
this formulation provides nice theoretical interpretations. It is
natural to introduce a line process [11] which is equivalent to
"labeling" the outliers in the robust estimation setting [12].

Notice that (17) also provides a simple recipe to extract
singularity set S of ID~I from the estimated ~ by thresholding
at level a:

s = {x : ID~(x)1 > Q}.

deformed source (HS Reg.) deformed source (TQ Reg.)

Fig. 2. Registration results with HS and TQ regularizations. Bottom row:
superior-inferior deformation component U .

for singularities. In the future, we will further investigate
numerical aspects of this problem, 3D applications and assess
the performance quantitatively.

This may be useful for extracting motion interfaces.
To alleviate the local minima issue due to nonconvexity,

we start with a large initial Q as indicated in Fig. 1. This is
equivalent to use the conventional Tikhonov regularization (the
vector version is more commonly known as Hom and Schunk
in optical flow) of Ute form E r = IVul2 + IVvl2 as S = 0
for Q large enough. Then the scale parameter Q is gradually
decreased till the desired tolerance for discontinuity. To speed
up the implementation, a multi-resolution scheme is applied.

SI def. U(x) (HS Reg.) SI def. U(x) (TQ Reg.)

V. PRELIMINARY RESULTS

We applied the proposed method to two coronal CT slices
obtained from deep inhale and exhale phases. We chose the
tradeoff parameter A'S so that both HS and the truncated
quadratic (TQ) regularized results have similar data discrep
ancy value. Fig. 3 demonstrates that the proposed regular
ization results in smooth deformation in homogeneous organ
region (lung, heart and exterior of rib-cage) and correctly
preserves motion interfaces on the motion boundaries. It is
known that respiratory motion mainly occur in the superior
inferior (vertical) direction. The depicted vertical deformation
components [Fig. 3bottom] illustrate that the proposed method
correctly captures the different motions for the interior and
exterior of the rib cage. Moreover, it also shows that the
interaction between the diaphragm and the lung is the major
"driving force" for the respiratory organ motion.

VI. CONCLUSION

We have proposed a class of regularizations that preserve
discontinuities in deformation fields. It applies a robust esti
mation function to a coordinate-free measure of deformation
variation to ensure smoothness in most ROI, yet also allowing
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