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ABSTRACT

Dual-energy (DE) X-ray computed tomography (CT) has been proposed as an useful tool in various applications.
One promising application is DECT with low radiation doses used for attenuation correction in positron emission
tomography (PET). In low-dose DECT, conventional methods for sinogram decomposition have been based on
logarithmic transformations and ignored noise properties, leading to very noisy component sinogram estimates.
In this paper, we propose two novel sinogram restoration methods that are statistically motivated; penalized
weighted least square (PWLS) and penalized likelihood (PL), producing less noisy component sinogram estimates
for low-dose DECT than the conventional approaches. The restored component sinograms can improve attenua-
tion correction, thus allowing better image quality in PET. Experiments with a digital phantom indicate that the
proposed methods produce less noisy sinograms, reconstructed images, and attenuation correction factors (ACF)
than the conventional one, showing promise for CT-based attenuation correction in emission tomography.
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1. INTRODUCTION

Combing PET and X-ray CT systems in a single scanner has several benefits in medical diagnosis. Firstly, it
provides the accurate alignment of functional and anatomical information obtained from the human organs. For
example in oncology imaging, PET/CT can be used to improve the identification and localization of the lesions
of the human organs such as cancers. Secondly, the CT images are used for the attenuation correction of the
PET images, which is called CT-based attenuation correction (CTAC). The CTAC provides lower noise in ACFs
and less scan time than the standard attenuation correction by PET transmission scan.1,2

In the CTAC for PET, CT images need to be transformed to estimates of the linear attenuation coefficients
(LAC) evaluated at 511keV. However, there is no exact way to transform LACs in the range of CT energies
(30keV ∼ 150keV) to LACs at the PET energy (511keV). Some methods for this conversion have been proposed,
e.g., segmentation or bilinear scaling for CT images obtained using a single-kVp source spectrum.

Compared to the conventional X-ray CT using a single-kVp spectrum, there are advantages in DECT, i.e.,
dual-kVp X-ray CT. For example, DECT requires no prior knowledge of object’s attenuation properties for
segmentation. It is thus possible to eliminate a potential source of errors by using DECT.3 Recent studies show
that, when DECT scanners are integrated into PET scanners, it provides more accurate attenuation correction
in the emission image reconstruction by reducing bias compared to single-kVp CT, therefore improving PET
images.4,5 When the main purpose of DECT is the attenuation correction in PET images, one should use low
X-ray doses, requiring statistical methods for sinogram restoration or image reconstruction to minimize noise.
Increased scan time by DECT can be avoided by alternating the incident spectra between projection angles or
slices or conceivably in other arrangements.

We can make ACFs for PET in the sinogram domain without having to reconstruct DECT images. Therefore,
with a polyenergetic measurement model to correct beam-hardening artifacts, we mainly focus on developing
iterative algorithms for sinogram restoration in DECT based on proper statistical models in this paper. Since the
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spatial resolution of usual PET images is modest, the computational cost of sinogram restoration in DECT can
be practical. Sinogram restoration approaches based on appropriate statistical models can perform well even at
low doses, whereas the conventional sinogram decomposition performs poorly in low signal to noise ratio (SNR).
The proposed DECT methods generalize previous restoration approaches for single-kVp CT.6

This article is organized as follows. We start with the discussion of a polychromatic measurement model
and a basic material decomposition for DECT in section 2. For sinogram restoration in DECT, we first review
the conventional sinogram decomposition method in section 3.1. Then, two statistically motivated approaches,
PWLS and PL are introduced and their iterative algorithms are derived by the optimization transfer principle in
section 3.2 and section 4. Some simulation results to compare the conventional approach and proposed methods
are provided in section 5. Finally, the conclusions are drawn in section 6.

2. POLYCHROMATIC MEASUREMENT MODEL

We consider a general measurement model based on polychromatic source spectra for multiple-kVp CT in this
section. Transmission tomographic measurements are collected for M0(≥ 1) different incident spectra. For
each incident spectrum, forward projections (line integrals) are recorded for Nd radius-angle pairs, forming a
component sinogram. We let ymi denote the measurement for the mth incident spectrum and the ith ray, where
m = 1, . . . ,M0 and i = 1, . . . , Nd. We assume that ymi is a random variable whose ensemble mean ȳmi is defined
by an underlying physical phenomenon as

E[ymi] = ȳmi �
∫
Im(E) exp

(
−
∫
Li

µ(�x, E) d�
)

dE + rmi, (1)

where Im(E) denotes the product of the mth source spectrum and the detector gain, and
∫
Li

· d� is the line
integral along the ith ray. µ(�x, E) represents the LAC of the scanned object at the spatial location �x and the
energy level E , and rmi denotes known additive background contributions such as room background, dark current
and scatter. By considering the polychromatic nature of M0 X-ray sources spectra, i.e., the integral over the
energy in (1), correction for beam hardening effects can be made automatically in the algorithms for sinogram
restoration that will be developed in section 3.2 and section 4.

Since the measurements ymi are finite whereas µ(�x, E) is a continuous function of the location �x and the
energy E , we need to parameterize the LAC. We model µ(�x, E) using a set of basis functions that are separable
in the space and energy domain as follows:7

µ(�x, E) =
L0∑
l=1

βl(E)ρl(�x), (2)

where βl(E) denotes the energy-dependent mass attenuation coefficient (MAC) and ρl(�x) is the density map of
the lth material type for l = 1, . . . , L0. L0 thus denotes the number of material types comprising the object.
Usually, M0 = 2 and L0 = 2, e.g., soft tissue and bone, are set in DECT. Other material decompositions are
possible.8

Substituting (2) into (1) and simplifying yield the following expression for the ensemble mean ȳmi:

ȳmi = Ime
−fim(si) + rmi, (3)

fim(si) � − log vim(si), vim(si) �
∫
Im(E)
Im

e−
PL0

l=1 βl(E)sli dE , (4)

where the nonlinear function fim(si) characterizes the beam hardening caused by polychromatic X-ray source
spectra. We define the total intensity Im for the mth incident spectrum and sinogram vector si at the ith ray as

Im �
∫
Im(E) dE , si � (s1i, . . . , sL0i)

T
, sli �

∫
Li

ρl(�x) d�. (5)

It can be shown that the nonlinear function fim(si) has the following two properties. For any (l, i,m), we have

∂fim(si)
∂sli

> 0, −∇2fim(si) � 0, (6)

Proc. of SPIE Vol. 6913  691312-2



where the inequality ”�” is in the matrix sense. Therefore fim(si) is a strictly monotonic increasing and concave
function with respect to si. These properties are useful to determine the curvatures of the surrogate functions
for PWLS in section 3.2.

For convenient numerical implementation, there have been several methods to approximate fim(si). Instead
of the conventional approach of using polynomial approximations, we exploit an exponential approximation that
imitates the definition of fim in (4). We assume

fim(si) ≈ f̃im(si) � − log

(∑
k

αimke
−βT

imksi

)
, (7)

where we require αimk ≥ 0 and
∑

k αimk = 1 because we can treat Im(E)/Im as a probability density function
with respect to E . The coefficients αimk and βimk can be determined by non-negative least square (NNLS).
After fitting (7) to the sample values of fim(si) evaluated at the lattice locations of si inside an appropriate
rectangular region, we obtain approximations to the first derivative and second derivative of fim at the other
locations of si. These approximations are useful for implementing the developed algorithms by PWLS and PL
in the following sections.

3. LOGARITHMIC TRANSFORMATION BASED METHODS

Before proposing a statistical method based on PL, two approaches that are based on a logarithmic transformation
of the measurements are described in this section. The first method is the conventional non-statistical sinogram
decomposition and the second one is a statistically motivated sinogram decomposition by PWLS.

3.1 Conventional Sinogram Decomposition
For a given noisy measurement ymi, an easy and naive method to estimate fim(si) is to invert (3). By ignoring
measurement noise and inverting (3), we have the following estimate of fim:

f̂im � − log
{

smooth
(
ymi − rmi

Im

)}
, (8)

where radial smoothing is often applied to reduce noise.9 By equating f̂im to fim(si) in (4), we have a system of
M0 nonlinear equations with L0 unknowns for the ith ray. Since it is usual to choose M0 = L0, simply solving
this system of equations yields an estimate of the sinogram vector of the following form:

ŝi � f−1
i

(
f̂i

)
, (9)

where fi � (fi1, . . . , fiM0)
T for i = 1, . . . , L0. This is called the classical sinogram decomposition, and it involves

a noise amplifying step. After estimating si for all i, the next step is usually to use these component sinograms
to reconstruct component images, e.g., soft tissue and bone images, by separately applying filter back projection
(FBP). This procedure produces unacceptably noisy estimates of the component images, limiting the use of the
reconstructed images for attenuation correction of PET images.

3.2 Sinogram Decomposition with PWLS
Instead of solving the nonlinear equations with the estimates in (8), we propose to estimate component sinograms
by a statistically motivated method: minimizing a PWLS cost function. Such a method requires an iterative
algorithm to restore component sinograms, thus computationally more expensive than the conventional sinogram
decomposition. However, iterative methods usually provide much less noisy sinogram estimates and the overall
computational cost, when the PWLS method is combined with FBP, is not as expensive as full iterative methods
for the reconstruction of CT images. Using f̂im from (8), we estimate the component sinograms by conducting
the following PWLS minimization. Subject to the non-negativity of the elements of s, we have

ŝPWLS = arg min
s∈RL0×Nd≥0

Φ(s) � arg min
s∈RL0×Nd≥0

Nd∑
i=1

1
2

(
f̂i − fi(si)

)T

Di

(
f̂i − fi(si)

)
+ R(s), (10)
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where the sinogram matrix whose size is L0 ×Nd is defined as s � {si}Nd

i=1 and the weight matrix whose length
is M0 ×M0 is given by Di � diagM0

m=1{ymi} for i = 1, . . . , Nd. If the measurements are approximately Poisson
distributed and rmi is small, this choice of Di is reasonable based on the approximate variance10,11 of f̂im given
by

var
(
f̂im

)
≈ var(ymi)

(ȳmi − rmi)
2 ≈ 1

ymi
. (11)

The roughness penalty function R(s) is generally expressed in the form of

R(s) �
L0∑
l=1

γl

K∑
k=1

ψlk ([Clšl]k) , (12)

where γl is the regularization parameter that controls the tradeoff between the data fit and the roughness penatly
for lth material type, ψlk is a convex potential function, Cl is a first-order difference matrix, and šT

l denotes a
row vector of the sinogram matrix s associated with the lth material type. In this paper, we use a quadratic
penalty function, i.e., ψlk(t) � t2/2 and Cl = C is chosen to regularize component sinograms only in the radial
direction. So, k ≈ Nd. We have the following penalty function:

R(s) =
γ1

2

K∑
k=1

[Cš1]
2
k +

γ2

2

K∑
k=1

[Cš2]
2
k. (13)

We use the optimization transfer principle12 to perform the minimization in (10). Since the PWLS data
fit term in (10) and R(s) in (12) are additively separable, separable quadratic surrogates (SQS) can be easily
derived in the framework of the optimization transfer principle and the non-negativity constraint on s can be
imposed, allowing a simultaneous update of sli for l = 1, . . . , L0 and i = 1, . . . , Nd. We arrive at the following
equation for the update of component sinogram estimates in the nth step:

s
(n+1)
li =

⎡
⎣s(n)

li − 1

h
(n)
li

∂Φ
(
s
(n)
li

)

∂sli

⎤
⎦

+

, (14)

where the subscript + is due to the non-negativity constraint on sli. The curvature h(n)
li is defined by

h
(n)
li �

M0∑
m=1

wim + γl

K∑
k=1

c2ki

aki
, (15)

where cki � [C]ki. If cki �= 0, we set aki � |cki|/
∑Nd

i′=1
|cki′ |. If cki = 0, we set aki = 0. The curvature piece

from the WLS is given by

wim �
(
||bm||2 +

[
f̂im

]
+
· || − ∇2fim(0)||

)
ymi, (16)

where bm � [β̄1m, . . . , β̄L0m]T and the effective MAC is given by

β̄lm �
∫
βl(E)

Im(E)
Im

dE . (17)

Note that the curvature h(n)
li can be precomputed and the associated surrogate functions satisfy the surrogate

conditions. Therefore, the updates provided by (14) decrease the PWLS cost function Φ(s). After estimating
the component sinograms for L0 material types, FBP can be separately applied to each sinogram {ŝil}Nd

i=1 to
reconstruct the component images if desired. However, we can obtain ACFs for PET images directly from the
restored component sinograms by PWLS.
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4. STATISTICAL SINOGRAM RESTORATION BY PENALIZED LIKELIHOOD

The PWLS approach discussed in the previous section is statistically motivated. However, it requires the log-
arithmic transformation to obtain f̂im in (8), so the solutions are suboptimal in terms of dose and noise. This
section proposes a PL method based on a Poisson measurement model. By combining the Poisson noise model
with the ensemble mean in (1), we assume the measurement ymi obeys a Poisson distribution, namely,

ymi ∼ Poisson (ȳmi(si)) . (18)

This model leads to the following PL cost function:

Ψ(s) � −L(s) +R(s) =
M0∑

m=1

Nd∑
i=1

Lmi(si) +R(s), (19)

where the sinogram matrix is denoted as s � {si}Nd

i=1 and the negative Poisson log-likelihood function for the
mth incident spectrum and ith ray is defined by

Lmi(si) � ȳmi(si) − ymi log ȳmi(si), (20)

where gmi(x) � x − ymi log x is a convex function with respect to x. We use the same form of the roughness
penalty function as (12) for the PL cost function.

We estimate the component sinograms by performing the following minimization:

ŝPL = arg min
s∈RL0×Nd≥0

Ψ(s). (21)

We again use the optimization transfer principle12 to obtain a sequence of surrogates to compute ŝPL. Since
both L(s) (data fitting term) and R(s) (penalty term) are additively separable, SQSs can be easily derived in
the framework of the optimization transfer principle and thus all estimates of sli can be updated simultaneously
for l = 1, . . . , L0 and i = 1, . . . , Nd. One arrives at the following equation for the update of component sinogram
estimates in the nth step. For given l and i, we have

s
(n+1)
li =

⎡
⎣s(n)

li − 1

d
(n)
li

∂Ψ
(
s
(n)
li

)

∂sli

⎤
⎦

+

, (22)

where the subscript + imposes the non-negativity constraint on the sinogram matrix s. The curvature d(n)
li and

effective energy of the mth spectrum Ēm are defined as follows:

d
(n)
li �

M0∑
m=1

βl(Ēm)
L0∑
j=1

βj(Ēm)ymi + γl ·
K∑

k=1

c2ki

aki
, Ēm �

∫ EIm(E) dE∫
Im(E) dE , (23)

where cki � [C]ki and we precompute the curvature d(n)
li to accelerate the algorithm in (22). As in PWLS, if

cki �= 0, we set aki � |cki|/
∑Nd

i′=1
|cki′ |, and if cki = 0, we set aki = 0. There are no easy way to show that the

surrogate functions associated with the curvature d(n)
li satisfy the surrogate conditions due to the approximations

used to make d(n)
li precomputable. Thus we may not have the monotonicity of the PL cost function Ψ(s) with

the updates provided by the algorithm in (22). However, if the approximations are reasonably accurate and
d
(n)
li provides a sufficiently large curvature ensuring the surrogate conditions, we can expect the monotonicity

when we implement (22). This can be checked empirically by investigating the value of Ψ(s) in each iteration
for given data. In fact, the simulations corresponding to the PL method exhibit monotonicity in section 5. To
reconstruct component images from ŝPL, FBP can be applied separately to each restored component sinogram
as usual. However, we can make ACFs for PET directly from the sinogram domain.
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Figure 1. Two incident spectra Im(E) against E [keV] for m = 1, 2: 80kVp (top) and 140kVp (bottom). The dashed
vertical line indicates the effective energy (Ēm) of each spectrum defined in (23).

5. SIMULATION EXPERIMENTS

To compare the conventional sinogram decomposition and two proposed sinogram restoration methods, we
performed simulations with a digital phantom consisting of soft tissue and bone. Two source spectra with 80kVp
and 140kVp that are incident on the phantom are shown on Fig.1 with their effective energies (Ē1 = 57 and
Ē2 = 72). The true density maps of two material types are shown in the first row of Fig.3. From the true density
maps, we synthesized the low-dose DECT measurements using Poisson random variables whose ensemble means
are given by (1) for m = 1, . . . ,M0 and i = 1, . . . , Nd. To simulate low radiation doses, the number of incident
photons per ray was set to 5×104 for the 140kVp spectrum. The same regularization parameter (γ1 = γ2 = 2−5)
for soft tissue and bone was used for PWLS and PL. For fair comparisons, we applied a spatial kernel given
by K(r) � {0.25, 0.5, 0.25} for smoothing in the radial direction to the restored component sinogram by the
conventional decomposition only. We pursue more rigorous analysis to match the spatial resolutions of restored
component sinograms by three methods elsewhere.

We compared the performance of the conventional sinogram decomposition, the sinogram decomposition by
PWLS, and the sinogram restoration by PL in the sinogram domain and in the image domain. Table 1 shows
their normalized root mean squared (NRMS) errors. According to Table 1, the PL approach provides the best
results among three methods and PWLS is better than the conventional sinogram decomposition in terms of
NRMS errors in the restored sinograms and reconstructed images. Fig.2 shows the true component sinograms
(soft tissue and bone) and the restored component sinograms by three methods. The reconstructed images by
FBP are shown on Fig.3. We conclude that the PWLS and PL approaches provide less noisy restored component
sinograms and reconstructed images than the conventional method from Fig.2 and Fig.3. These figures support
the results in the top four rows of Table 1.

Since restored component sinograms can be used for attenuation correction in PET images directly, another
way to compare the three methods is in terms of ACF defined as follows: For i = 1, . . . , Nd,

φi � exp

(
L0∑
l=1

βl(E)ŝli

)∣∣∣∣∣
E=511 keV

, (24)
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Sinogram restoration method
NRMS error Conventional decomposition PWLS decomposition PL restoration

Sinogram of soft tissue 21% 13% 12%
Sinogram of bone 56% 34% 30%

Image of soft tissue 54% 33% 31%
Image of bone 64% 42% 41%

Attenuation correction factors 22% 9% 8%

Table 1. The NRMS errors of restored component sinograms (top two rows), reconstructed component images (middle two
rows), and attenuation correction factors (ACF) (bottom row) by the conventional decomposition, PWLS decomposition,
and PL restoration. The image reconstructions are performed by FBP.

where ŝli denotes the restored component sinograms for the lth material type. The ACFs are used to correct
the attenuation in PET images by compensating the survival probability. The bottom row of Table 1 shows
the NRMS errors of ACFs. We conclude that the proposed statistical approaches outperform the conventional
sinogram decomposition in terms of NRMS errors.

6. CONCLUSIONS

We proposed two statistical sinogram restoration methods in low-dose DECT for attenuation correction of PET
images. In the simulations, the proposed PL provided the lowest NRMS errors among three approaches and
PWLS yielded much lower NRMS errors than the conventional decomposition in the sinogram domain, in the
image domain, and in terms of ACFs. These methods showed promise for PET attenuation correction from
low-dose DECT sacns.
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Figure 2. The restored component sinograms (soft tissue and bone) by the conventional decomposition (the 2nd row),
PWLS decomposition (the 3rd row), and PL restoration (the 4th row) with true sinograms (the 1st row).
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Figure 3. The reconstructed component images (soft tissue and bone) by the conventional decomposition (the 2nd row),
PWLS decomposition (the 3rd row), and PL restoration (the 4th row). Applying FBP to the component sinograms in
Fig.2 yields these images. The true density maps of soft tissue (left) and bone (right) are shown in the 1st row.
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