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ABSTRACT
A challenge in MR imaging is that RF transmit coils produce
non-uniform field strengths, so an excitation pulse will pro-
duce tip angles that vary substantially from the desired tip an-
gle over the field of view. For parallel transmit excitation (us-
ing a coil array), it is important to have a map of the B1+ field
strength (and phase) for RF pulse design. Standard B1+ map
estimation methods perform poorly in image regions with low
spin density. This paper describes a regularized method for
B1+ map estimation using MR scans for each coil and for two
or more tip angles. Using these scans and exploiting the fact
that maps are generally smooth, the iterative algorithm esti-
mates both the magnitude and phase at each coil’s B1+ map.
Results from both simulations and real MR data show signifi-
cant improvements over conventional unregularized methods
for B1+ mapping.

Index Terms— Magnetic resonance imaging

1. INTRODUCTION

In MRI, a map of the B1+ field strength, called a B1+ map, is
essential in many situations. For parallel transmit excitation
(using a coil array), e.g., [1], one must have a map of the B1+
field strength (and phase) for RF pulse design. At high fields
(≥ 3T), large B1+ inhomogeneity creates spatially varying
signal and contrast; a B1+ map allows for proper pre-scan
calibration [2].
A conventional approach to B1+ mapping is to collect two

scans, one of which uses twice the RF amplitude of the other,
e.g., [2]. Using the double angle formula, a standard method-
of-moments estimator is used that ignores noise in the data.
This estimator performs poorly in image regions with low
spin density.
We propose a new approach that incorporates multiple

coils and multiple tip angles as well as accounts for noise in
the model. The iterative regularized estimator estimates both
the unknown B1+ magnitude and phase map from multiple
reconstructed images. The next section first reviews the stan-
dard approach for this problem, and then describes our new
and improved method with examples of the improved B1+
maps.
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2. B1+ MAP ESTIMATION

2.1. Conventional B1+ map

A conventional approach to B1+ mapping is to collect two
scans, one of which uses twice the RF amplitude of the other.
A model for the reconstructed images is

yj1 = fj sin(αj)+ε1j
yj2 = fj sin(2αj)+ε1j , (1)

whereαj is the unknown tip angle at the jth voxel. Estimating
αj is equivalent to estimating the B1+ field strength at the jth
voxel. Using the double angle formula:

E[yj2]
E[yj1]

=
sin(2αj)
sin(αj)

= 2 cos(αj) .

The standard estimate of αj is a method-of-moments estima-
tor that ignores the noise in the data:

α̂j = arccos
(
1
2
yj2
yj1

)
. (2)

This method has several limitations. It performs poorly in im-
age regions with low spin density, i.e., where yj1 is small. It
suffers from 2π ambiguities if αj is too large, yet it would be
sensitive to noise if αj is too small. And it does not imme-
diately generalize to the more general case where we acquire
multiple scans to cover a larger range of tip angles, possibly
even angles that are larger than 2π in some image regions.
The estimate (2) also does not provide phase information.

2.2. Signal model for multiple coils, multiple tip angles

Suppose there are K coils and we separately transmit from
each coil and then receive from a common coil. Suppose for
each coil we apply a sequence of L nominal tip angles with
known relative RF amplitudes al, for l = 1, . . . , L. We model
the resultingK × L reconstructed images as follows:

yjkl = fj eıϕjk sin(alxjk)+εjkl (3)

for k = 1, . . . ,K and j = 1, . . . , N , where fj denotes the
underlying object transverse magnetization in the jth voxel,
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ϕjk denotes the phase of the kth coil at the jth voxel, and
εjkl denotes zero-mean complex gaussian noise. Finally, xjk
denotes the unknown “B1+ map” that relates RF amplitude to
tip angle at the jth voxel for the kth coil. If the units of the
amplitudes al are gauss, then the units of xjk will be radians
per gauss. More typically, the units of al are arbitrary, and all
that is known is their relative values. In this case xjk will have
units such that the product of al and xjk has units of radians.
This should suffice for RF pulse design.
The goal is to estimate each B1 magnitude map xk �

(x1k, . . . , xNk) and phase map φk � (ϕ1k, . . . , ϕNk) from
the reconstructed images {yjkl}. The underlying magneti-
zation f � (f1, . . . , fN ) is also unknown but is a nuisance
parameter. We would like the estimator to work robustly even
in image regions where fj is small.
If fj were allowed to be complex, then the model above

would be non-identifiable because we could add phase to f
and subtract the same phase from each φk and E[yjkl] would
remain unchanged. To make the problem identifiable, one
could assume that ϕj1 is zero and then all the other ϕjk values
would be relative phases. Instead, we take the approach of
constraining f to be real. This reduces the ambiguity to a
sign change of f and a corresponding π phase shift in each
ϕjk.
Kerr et al. [3] consider a similar problem, except they as-

sume the al values are powers of two, and they use the fol-
lowing cost function:∑

l

(|yjkl| − |fj | sin(|alxjk|))2 .

This cost function does not corresponding to the complex
gaussian statistical model for the data. They applied a gen-
eral purpose minimization method from MATLAB. Most im-
portantly, for each voxel they used only the value of tip in-
dex l for which the tip was closest to π/2. In contrast, we
use all the data at every voxel, with a statistically motivated
cost function, and a minimization algorithm that is tailored to
this problem. We allow arbitrary choices for the al values,
although powers of two may be a reasonable choice.

2.3. Regularized estimator

We propose to jointly estimate the B1 magnitude maps x =
(x1, . . . ,xK), the phase maps φ = (φ1, . . . ,φK), and the
object f by finding minimizers of the following cost function:

Ψ(x,φ,f) =
K∑
k=1

N∑
j=1

L∑
l=1

1
2
|yjkl − fj eıϕjk sin(alxjk)|2

+β1 R(xk)+β2 R(φk), (4)

where R(xk) and R(φk) are regularizing roughness penalty
functions, for the magnitude and phase of the B1+ maps, and
β1 and β2 are regularized parameters that control the smooth-
ness of the estimates.

We use quadratic regularization because B1+maps are ex-
pected be spatially smooth, although edge-preserving regular-
ization could be used if needed. However, we choose not to
regularize the magnetization image f because it will contain
detailed structural information.
There is no analytical solution for the minimizer ofΨ over

all three sets of parameters, so iterative methods are required.
We consider an block alternating minimization approach in
which we minimize Ψ by cycling over each of the three pa-
rameter types and minimizing with respect to one parameter
vector while holding the other two at their most recent values.
For given estimates of φ and x, the minimizer of Ψ with

respect f is found analytically to be

fj = real

(∑K
k=1

∑L
l=1 e

−ıϕjk sin(alxjk) yjkl∑K
k=1

∑L
l=1 sin

2(alxjk)

)
. (5)

For given φ and f values, the problem of minimizing Ψ
with respect to the B1 map xk appears nontrivial because of
the nonlinearity of sin(alxjk). Consider just one term in this
cost function:

ψ(y, g, a, x) =
1
2
|y − g sin(ax)|2

≡ − real(yg∗) sin(ax)+1
2
|g|2 sin2(ax) .

The relevant derivatives of this term are:

∂

∂x
ψ = − real(yg∗) a cos(ax)+ |g|2 a sin(ax) cos(ax)

= −a cos(ax) real(g∗ (y − g sin(ax)))
∂2

∂x2
ψ = real(yg∗) a2 sin(ax)+ |g|2 a2 cos(2ax) . (6)

An upper bound for the curvature is

∂2

∂x2
ψ(y, g, a, x) ≤ a2

[
|yg| sin(ax)+ |g|2 cos(2ax)

]
≈ a2 |g|2 [

sin2(ax)+ cos(2ax)
]

= a2 |g|2 cos2(ax) ≤ a2 |g|2 .
Thus, using quadratic majorizer principles [4], a natural iter-
ation for updating xk is:

x(n+1)

k = x(n)

k − diag

{
1
bj

}
∇xk

Ψ(x(n),φ,f),

where

bj �
L∑
l=1

a2
l |fj |2 + rβ1.

The factor “r” depends on the choice of the regularizer R(xk).
For 2nd-order finite differences with the 8 nearest neighbors,
this factor is 4 · 4 · (2 + 2/√2).
For given f and x values, the problem of finding the min-

imizer with respect to the phase map φ has essentially the
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same mathematical form as the fieldmap estimation problem
described in [5]. In particular,

K∑
k=1

L∑
l=1

1
2
|yjkl − fj eıϕjk sin(alxjk)|2

≡ −
K∑
k=1

real

([
fj

L∑
l=1

sin(alxjk) yjkl

]
e−ıϕjk

)
. (7)

Therefore we can apply a similar iteration as described in [5]
with appropriate variables, as follows:

φ(n+1)

k = φ(n)

k − diag

{
1
dj

}
∇φk

Ψ(x,φ(n),f),

where

dj �
L∑
l=1

|yjklfj sin(alxjk)|+ rβ2.

Note that the only “coupling” between the estimates for
the various coils occurs in the object update (5). The updates
to the B1+ magnitude and phase maps are decoupled across
coils, so they could be parallelized.
The cost function Ψ is nonconvex, so the alternating min-

imization algorithm described above will descend from the
initial estimates to a local minimum [6]. . Thus it is desirable
to choose reasonable initial estimates. For x(0)

k , the standard
double angle method (2) is a natural choice. For initializing
the phasemap, (7) suggests:

ϕ
(0)
jk = ∠

(
fj

L∑
l=1

sin(alxjk) yjkl

)
.

Finally, for f (0) we use (5).

2.4. Simulation Study

To evaluate the regularized B1+ map estimation method de-
scribed above, we performed a simulation study using the
synthetic true maps shown in Fig. 1. We simulated noisy re-
constructed images for L = 3 different nominal tip angles
and K = 4 different transmit coils using the measurement
model (3). The relative amplitudes were al = (10, 20, 30).
We added complex gaussian noise such that the SNR, defined
by 10 log10(‖y‖/‖y − E[y]‖) was about 21 dB, yielding the
images shown in Fig. 2. Fig. 3 shows the initial estimates
using the methods described. Note that the standard double
angle method only uses two of the three scans. Fig. 4 shows
the regularized estimates.
The reduced noise due to regularization and due to using

all the scan data is evident. Fig. 3 shows the conventional
estimate for the B1map. Not only is this image very noisy, but
there the B1 map is not properly estimated in the large signal
void of the skull. The proposed method smoothly interpolates
across this signal void for a smooth B1 map in the region

of interest as seen in Fig. 4. Similarly, signal voids can be
seen in the initial estimate of the phase map yet are smoothed
appropriately in the final estimate.
We calculated the error of both the conventional and our

new estimate for all four coils. We used a mask to include
only those points inside the object (not the background). The
combined RMSE for the four coils was .058 for the conven-
tional estimate, and .020 for the new estimate, a reduction of
more than half. This clearly shows the effect of less noise and
interpolating across the signal voids. Similarly, the final esti-
mate for the B1+ phase map has a RMSE of only .11 while
the initial estimate has an RMSE of .86 - almost eight times
greater.
We also used this algorithm on real MR data. We used

a phantom with coils positioned to create a B1 map that was
much larger on one side than on the other. We obtained im-
ages at eighteen tip angles from 10 degrees to 180 degrees.
Fig. 5 shows the results from the conventional estimate (with
tips at 30◦ and 60◦) (2) as well as using the proposed regu-
larized estimator with three of the tip angles (30◦, 60◦, 90◦)
and with all eighteen. The regularized estimates are much
smoother than the conventional estimate. This matches our
supposition that the phantom should have a smooth B1 map.
We see that even using just three images produces a much
smoother image than the conventional estimate.

B1+ magnitude maps

1 64

1

62   0

0.1

  0

Phase maps

1 64

1

62
−1.6

 1.6

−1.6

Fig. 1. True B1+ magnitude and phase maps used in simula-
tion.

3. DISCUSSION

We have described a new regularized method for B1+ map-
ping which estimates both the B1 magnitude and phase. This
method allows for multiple coils allowing for easy use in de-
signing pulse sequences for parallel excitation. This method
yields B1+ maps that interpolate smoothly over regions with
low spin density. This avoids noisy estimates in these regions
as well as 2π ambiguities that plague the conventional esti-
mate. The conventional estimate uses only two tip angles,
while our method allows for any arbitrary selection of angles.
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Scan for a1 = 10, center tip ∈ [19.9 20.7]

1 64

1

62

Scan for a2 = 20, center tip ∈ [39.7 41.3]

1 64

1

62

Scan for a3 = 30, center tip ∈ [59.6 62.0]

SNR = 21.0 dB
1 64

1

62

50

100

150

50

100

150

50

100

150

Fig. 2. Simulated MR scans for L = 3 different nominal tip
angles forK = 4 different transmit coils.

B1map initial

1 64

1

62   0

0.1

Phase initial

1 64

1

62 −1.6

 1.6

Fig. 3. Initial estimates of B1 maps (2).

B1map estimate

1 64

1

62   0

0.1

Phase estimate

1 64

1

62 −1.6

 1.6

Fig. 4. Regularized estimates of B1 maps.

Initial estimate

1 128

1

128     0

0.221
|B1+| using all tips 10−180 (gauss/waveform unit)

1 128

1

128     0

0.193

|B1+| using 30,60,90 (gauss/waveform unit)

1 128

1

128     0

0.209
phase using 30,60,90

1 128

1

128 −3.14

 3.14

Fig. 5. Top: conventional estimate of B1 using two images;
regularized estimate of B1 using all eighteen images; Bottom:
regularized estimate of B1 using three images; regularized es-
timate of the phase map.

The simulation results show a sharp decrease in the amount
of noise as well as interpolating across areas with low spin
density compared to the conventional estimate. The RMSE
of the new B1 map is less than half that of the conventional
estimate. These gains make this an appropriate method even
when using only one coil and the standard two angles.

4. REFERENCES

[1] U. Katscher, P. Brnert, C. Leussler, and J. S. van den Brink,
“Transmit SENSE,” Mag. Res. Med., vol. 49, no. 1, pp. 144–50,
Jan. 2003.

[2] C. H. Cunningham, J. M. Pauly, and K. S. Nayak, “Saturated
double-angle method for rapidB1+mapping,” Mag. Res. Med.,
vol. 55, no. 6, pp. 1326–1333, June 2006.

[3] A. B. Kerr, C. H. Cunningham, J. M. Pauly, R. O. Giaquinto,
R. D. Watkins, and Y. Zhu, “Self-calibrated transmit SENSE,”
in Proc. Intl. Soc. Mag. Res. Med., 2006, p. 2561.
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