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ABSTRACT
Our goal is to optimize regularized image reconstruction meth-
ods for emission tomography with respect to the task of de-
tecting small lesions of unknown location in the reconstructed
images. We consider model observers whose decisions are
based on finding the maximum value of a local test statistic
over all possible lesion locations. We use tail probability ap-
proximations by Adler (AAP 2000) and Siegmund and Wors-
ley (AS 1995) to evaluate the probabilities of false alarm and
detection respectively for the observers of interest. We illus-
trate how these analytical tools can be used to optimize regu-
larization with respect to the performance (at low probability
of false alarm operating points) of a maximum channelized
non-prewhitening observer.

1. INTRODUCTION

Tomographic reconstruction methods typically involve user-
specified parameters that control the noise-resolution trade-
off in the reconstructed images, e.g., regularization parame-
ters in penalized-likelihood reconstruction. We would like to
have a fast, analytical method for choosing such parameters
optimally based on some objective image quality criterion.

Several applications of emission tomography involve the
detection of a spatially localized target signal in an image re-
constructed from noisy data. We are interested in optimizing
the parameters of regularized image reconstruction methods
with respect to the detectability of such signals in the recon-
structed images. In clinical practice, these detection tasks are
typically performed by human observers. However, the detec-
tion performance of humans does not lend itself to analytical
optimization. Thus we turn to the mathematical observers that
have been proposed in the literature to model human perfor-
mance [1, §14.3]. To reflect clinical tasks more realistically, it
is of particular interest to consider detection tasks where the
location of the target signal is not known a priori.

Location uncertainty complicates the analysis of detectabil-
ity. Following convention, we focus on model observers whose

∗This work was supported in part by NCI grant P01 CA87634.

decisions are based on the maximum value of a linear local
test statistic over all possible signal locations. The exact dis-
tribution of the maximum of a correlated random field has the
form of a multiple integral, which is difficult to compute. The
“brute-force” approach to evaluating the performance of these
observers would be to perform time-consuming tomographic
reconstructions of Monte Carlo simulated projection data and
produce realizations of the maximum test statistic from the
reconstructed images. To avoid this, investigators have pro-
posed analytical approximations of the moments of the local
test statistics and used them to directly produce Monte Carlo
simulated realizations of the maximum test statistic [2, 3].

We follow an alternative approach which obviates the need
for simulations. Although the exact expression for the distri-
bution of the maximum is complicated, simple approxima-
tions of this distribution at high thresholds do exist for cor-
related Gaussian random fields [4]. In [5] we used these ap-
proximations to evaluate the probability of detection of the
maximum observer at low probabilities of false alarm. How-
ever, that analysis assumes (local) stationarity, so it is more
accurate for the signal-absent than the signal-present hypoth-
esis. Here we adopt instead the approach of [6] for the signal-
present analysis. We illustrate how these tools can be com-
bined to analyze the performance of the observers of interest.
Ultimately, we would like to use this approach to tune regu-
larization parameters locally at each pixel in the image.

2. THE DETECTION TASK

Let f denote the true object being imaged (or its approxima-
tion in R

np ). The object f consists of a background fb and
it may or may not also contain a spatially localized signal of
interest. We assume that, when the target signal is present
in the object, it is centered at one of a finite set of locations
� = 1, . . . , nL. We denote the signal centered at location � by
fs,�. The task at hand is to decide among nL + 1 hypotheses:

H0 : f = fb (signal absent)

H� : f = fb + fs,� (signal present at location �), (1)
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� = 1, . . . , nL. The background fb is generally random with
mean and covariance f̄b and Kb respectively. We assume for
simplicity that the target signal is random only in its location.

The decision is based on a noisy measurement y. When
y is acquired by a tomographic imaging system, its uncondi-
tional mean and covariance can be written, respectively,

E[y] = A E[f ] +r (2)

Cov{y} = diag{AE[f ] +r}+AKbA
′, (3)

where the linear operator A models the imaging system and
the vector r represents scatter and/or random coincidences.
Both A and r are assumed deterministic and known. The
signal intensity is assumed weak with respect to the back-
ground intensity, so we can write Π � diag{A E[f ] +r} ≈
diag

{
Af̄b + r

}
. We focus on observer models that are ap-

plied on a reconstructed image f̂ , obtained from y by

f̂(y) = Zy, (4)

for some linear reconstructor Z . Common tomographic re-
construction techniques can be approximated as linear around
the signal when the latter appears on a background that is suf-
ficiently high to render the non-negativity constraint inactive.

Following convention, we focus on observers whose de-
cisions rely on computing a local test statistic t� = t�(f̂(y))
for each candidate location � and comparing the maximum,

tmax = max
�=1,...,nL

t�, (5)

to a data-independent threshold τ . If tmax > τ , it is decided
that the signal is present, otherwise it is decided that the signal
is absent. Our goal is to optimize the reconstructor Z around
each location in the image with respect to the detection per-
formance of such an observer. We quantify the observer’s
performance by a ROC curve defined around a given location
� ∈ {1, . . . , nL}. This curve plots the probability of detection,

PD(τ) � P{tmax ≥ τ |H�}, for some � ∈ {1, . . . , nL} , (6)

versus the probability of false alarm,

PFA(τ) � P{tmax ≥ τ |H0} . (7)

The curve is traced by varying the decision threshold τ .

3. ASYMPTOTIC DISTRIBUTION OF tmax

To trace the ROC curve for tmax, one must calculate the CDF
of tmax, from which threshold-exceeding probabilities such
as (6) and (7) can then be obtained. Although a closed-form
expression for such probabilities is generally not available
when the t�’s are correlated, approximate expressions for high
values of the threshold τ have been derived.

By analyzing the Euler characteristic of excursion sets,
Adler has developed approximations for the distribution tails

of the maximum of some correlated random fields [4]. In par-
ticular, let tmax = maxx∈S T (x) be the maximum value of
a stationary 2-D Gaussian random field T (x) = T (x1, x2)
with zero mean, variance σ2

T , and autocovariance function
RT (x) = RT (x1, x2), over a set S. Then the probability
of tmax exceeding a high threshold τ is approximately

P{tmax ≥ τ} ≈

2∑
d=0

Rd(S)ρd(τ ;σT ,ΛT ), (8)

where ΛT is the matrix with ij-th element equal to {ΛT }ij =
−∂2RT (0, 0)/∂xi∂xj , i, j = 1, 2. When the search area S
is a disk of radius r, we have R0(S) = 1, R1(S) = πr,
and R2(S) = πr2. Finally, ρ0(τ ;σT ,ΛT ) � 1 − Φ(τ/σT ),

ρ1(τ ;σT ,ΛT ) �
| det ΛT |1/4

2πσT
e−τ2/2σ2

T , and ρ2(τ ;σT ,ΛT ) �

| det ΛT |1/2

(2π)3/2σ3
T

τ e−τ2/2σ2
T , where Φ(·) is the standard normal CDF.

Approximations of the form (8) have been applied to the prob-
lem of detecting activation in functional neuroimaging, yield-
ing satisfactory accuracy for tail probabilities as high as 0.2 [7].

The analysis leading to (8) assumes a continuous random
field. For fields defined solely on a lattice, the results hold
asymptotically as the lattice becomes finer [4]. Thus, one
can apply (8) to approximate the tail distribution of the max-
imum test statistic in (5), if the discrete local test statistics
t�, � = 1, . . . , nL are stationary with known mean and autoco-
variance. Under the signal-absent hypothesis, the t�’s may be
considered stationary to within the accuracy of the local shift
invariance approximations discussed in section 4. The same
can be said in terms of the second-order statistics of the t�’s
under the signal-present hypothesis. However, the mean of
the t�’s cannot be considered constant throughout the search
area in the presence of a spatially localized target signal.

An alternative approach to the signal-present analysis fol-
lows the argument of Siegmund and Worsley in [6]. This ap-
proach assumes that, in the signal-present case, (i) The maxi-
mum is most likely to occur near x�, i.e., near the center of the
target signal, and (ii) In the immediate neighborhood of the
target signal, the field T (x) can be approximated as quadratic
in x. These assumptions lead to the following approximation:

P{tmax > τ |H�} ≈ 1 − Φ
(τ − µT (x�)

σT

)

+ φ
(τ − µT (x�)

σT

) 1

σT

[∂2RT (0)

∂2xi

]/[∂2µT (x�)

∂2xi

]
,(9)

where φ(·) the standard normal PDF and µT (x) � E[T (x)|H�].
We will combine here (8) and (9) with locally shift-invariant

approximations to compute, respectively, the probabilities of
false alarm and detection for a commonly used observer model.

4. MOMENTS OF THE LOCAL TEST STATISTICS

The observer models proposed in the literature to predict hu-
man performance use linear channelized local test statistics.
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For every candidate location �, these models apply some lo-
cal template w� ∈ R

M to the output ĉ� of M bandpass filters:

t� = w′
�ĉ�, ĉ� = C

′
�

(
f̂ − E

[
f̂b

] )
+ ε�, (10)

where C� = [C1,�, . . . ,CM,�] consists of M operators, each of
which applies a bandpass filter and samples the output at lo-
cation �. The internal noise vector ε� ∈ R

M models inherent
uncertainty in the observer’s decisions and is usually mod-
eled as zero-mean and Gaussian with some covariance matrix
Πε�

. As in [2, 3], the mean of the reconstructed background
f̂b � Z(Afb + r) is subtracted in (10) because the observer
chooses the most suspicious location by comparing intensities
relative to the background, rather than absolute intensities.

Let t ∈ R
nL be the vector containing the local test statis-

tics t�, � = 1, . . . , nL, and let V = [v1, . . . ,vnL
] contain the

image-domain local templates v� = C�w�. Combining (2)
and (3) with the linear reconstructor (4) yields the mean of t

under the signal absent and present hypotheses respectively:

µt|H0
= 0, µt|H�

= V
′
ZAfs,�, � = 1, . . . , nL, (11)

and the covariance of t under any of the nL + 1 hypotheses:

Πt = V
′
ZΠyZ

′
V+diag{w′

�Πε�
w�, � = 1, . . . , nL} (12)

with Πy = Π + AKbA
′. Regardless of the exact distribu-

tion of the data, the local test statistics can be approximated as
Gaussian due to their linearity and the central limit theorem.
Thus we will use (8) and (9) to evaluate the probabilities of
false alarm and detection respectively. Both approximations
assume stationarity in terms of the second-order moments of
the t�’s. For a typical shift-variant tomographic system, the
t�’s are not globally stationary. However, we will consider
the system to be locally shift-invariant and the object back-
ground to be locally stationary over a small area around each
candidate location �. Then the second-order moments of the
t�’s can be approximated as constant in that local region.

We illustrate the use of this approach for a reconstruc-
tor Z of the unconstrained quadratically penalized weighted
least-squares (QPWLS) family with uniform regularization:

Z = (F + βR)−1
A

′
Π

−1, (13)

where F � A
′
Π

−1A the Fisher information operator, R the
regularization operator and β the user-specified regularization
parameter that controls resolution in the reconstructed image.
Our goal is to choose β for optimal detection performance.

We assume that the target signal fs,� takes the same shape
at any candidate location �. That is, fs,� is a copy of a com-
mon signal profile fs shifted to location �. Similarly, we as-
sume that the responses of the observer’s channels at different
locations � are shifted copies of each other. Let X0 ∈ C

np

be the spectrum of fs, when the latter is assumed centered at
(0, 0), and let T0 ∈ C

np×M contain in its M columns the fre-
quency responses of the observer’s M channels, when their
impulse responses are assumed centered at (0, 0).

We now assume that the target signal profile fs is well-
localized in space. Similarly to [2, 3], we approximate the
system as locally shift-invariant and the object as locally sta-
tionary under all hypotheses around any specific location �.
Then, for the QPWLS reconstructor (13), we can approximate
within some small spatial extent around location �:

ZA ≈ U
−1H U , ZΠyZ

′ ≈ U
−1G U , (14)

where H � diag{λk/(λk + βωk), k = 1, . . . , np}, G �

diag
{
(λk + λ2

kνk)/(λk + βωk)2, k = 1, . . . , np

}
and where

the λk’s, νk’s, and ωk’s contain the local frequency responses
of F , Kb, and R respectively at the location �.

The maximum channelized non-prewhitening (MaCNPW)
observer has been shown to predict human observer perfor-
mance in some unknown-location tasks [8]. The local tem-
plate applied by this observer at each location � is

wCNPW,� � E[ĉ�|H1,�]−E[ĉ�|H0] = C
′
�ZAfs,�. (15)

For a reconstructor Z of the QPWLS family (13), applying
the locally-shift invariant approximation of (14) yields the fol-
lowing approximation to the MaCNPW local template in (15):

wCNPW,� ≈ T ′
0HX0. (16)

Let the λk’s, ωk’s, and νk’s contain the local frequency re-
sponses of the respective operators at location �c, correspond-
ing to the center of the observer’s search area. We assume that
these responses capture the approximate behavior of the op-
erators throughout the search area, if the latter is not too big.
This implies that the MaCNPW templates in (16) are approx-
imately shift-invariant throughout the search area, i.e., w� ≈
w�c

, � = 1, . . . , nL. Substituting the frequency-domain rep-
resentations (14) into the moments (11)-(12) yields

µt|H�
≈ np I

′
SAU

−1
Φ Ue�, � = 1, . . . , nL, (17)

Πt ≈ np I
′
SAU

−1
Ψ UISA + (w′

�c
Πε�c

w�c
)I,(18)

where ISA � [e1| . . . |enL
] has as its columns the impulses

e�, � = 1, . . . , nL, corresponding to the nL locations in the
search area, Φ � diag{V ∗

k Xkλk/(λk + βωk), k = 1, . . . , np},

Ψ � diag
{
|Vk|

2λk(1 + λkν�
k)/(λk + βωk)2, k = 1, . . . , np

}
,

and where Vk, Xk are the kth elements of V0 � T0w�c
and

X0 respectively.

5. PRELIMINARY RESULTS AND DISCUSSION

We obtain σT , ΛT from the local Fourier approximation (18)
and use them in the approximation (8) to calculate the prob-
ability of false alarm (7) at high detection thresholds τ . We
also obtain µT (x�c

) from the local Fourier approximation of
the mean (17) and use it in the approximation (9) to calculate
the probability of detection (6). We obtain the two derivatives
required in (9) by applying finite differences to (18) and (17).
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Fig. 1. Empirical and analytical probabilities of false alarm
PFA(τ) and detection PD(τ) versus detection threshold τ .
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Fig. 2. Plot of PD (with error bars) versus QPWLS resolution
for a fixed PFA = 0.02.

As an example, we consider a 2-D PET system model with
image size 128 × 128 and an anthropomorphic chest phan-
tom as the mean background f̄b. The background fb has a
Gaussian autocorrelation function. The target signal fs,� has
a known Gaussian profile but unknown location �. We con-
sider a MaCNPW observer with square bandpass channels,
no internal noise, and a disk-shaped search area. We calcu-
late PD(τ) and PFA(τ) analytically for different values of the
threshold τ . We repeat this for various values of β. Fig. 1
compares these results to the empirical probabilities obtained
from simulations, for an intermediate QPWLS resolution of
3 pixels and for two different search area sizes. We interpolate
these results to find the probability of detection PD at a fixed
value of the probability of false alarm PFA = 0.02 for every
β. Fig. 2 shows the linearly interpolated PD vs. QPWLS reso-
lution. As seen in Fig. 1(c)-1(d), the quadratic approximation

implied in (9) is more accurate for a search diameter of 7 pix-
els, which is comparable to the support of the target signal,
than for a larger search area. Even if the analytical approx-
imations are not always accurate at predicting the value of
the probability of detection, they are maximized at nearly the
same QPWLS resolution as the empirical curves. Thus, ana-
lytically computed plots like the ones in Fig. 2 can be used for
tuning the regularization parameter β (i.e., the resolution) of
the QPWLS reconstructor to optimize detection performance
locally, much faster than with simulation-based methods. For
further discussion of these results, we refer the reader to [9].
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